
Co-expression analysis of RNA-seq data

Andrea Rau

July 19, 2016 @ SPS Summer School

andrea.rau@jouy.inra.fr 1 / 45



Outline

1 Co-expression analysis introduction

2 Unsupervised clustering
Centroid-based clustering: K-means, HCA
Model-based clustering
Mixture models for RNA-seq data

3 Conclusion / discussion

andrea.rau@jouy.inra.fr 2 / 45



Aims for this afternoon

What is the biological/statistical meaning of co-expression for
RNA-seq?

What methods exist for performing co-expression analysis?

How to choose the number of clusters present in data?

Advantages / disadvantages of different approaches: speed, stability,
robustness, interpretability, model selection, ...
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Co-expression analysis introduction

Design of a transcriptomics project

Biological question

↓ ↑
Experimental design

↓
Data acquisition

↓
Data analysis:

Normalization, differential analysis, clustering, networks, ...

↓ ↑
Validation
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Co-expression analysis introduction

Gene co-expression1

1Google image search: “Coexpression”
andrea.rau@jouy.inra.fr 5 / 45



Co-expression analysis introduction

Gene co-expression is...

The simultaneous expression of two or more genes2

Groups of co-transcribed genes3

Similarity of expression4 (correlation, topological overlap, mutual
information, ...)

Groups of genes that have similar expression patterns5 over a range of
different experiments

Related to shared regulatory inputs, functional pathways, and
biological process(es)6

2https://en.wiktionary.org/wiki/coexpression
3http://bioinfow.dep.usal.es/coexpression
4http://coxpresdb.jp/overview.shtml
5Yeung et al. (2001)
6Eisen et al. (1998)
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Co-expression analysis introduction

From gene co-expression to gene function prediction

Transcriptomic data: main source of ’omic information available for
living organisms

Microarrays (∼1995 - )
High-throughput sequencing: RNA-seq (∼2008 - )

Co-expression (clustering) analysis

Study patterns of relative gene expression (profiles) across several
conditions

⇒ Co-expression is a tool to study genes without known or predicted
function (orphan genes)

Exploratory tool to identify expression trends from the data
( 6= sample classification, identification of differential expression)
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Co-expression analysis introduction

RNA-seq profiles for co-expression

Let yij be the raw count for gene i in sample j , with library size sj
Profile for gene i : pij =

yij∑
` yi`

Normalized profile for gene i : pij =
yij/sj∑
` yi`/sj
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Unsupervised clustering

Unsupervised clustering

Objective

Define homogeneous and well-separated groups of genes from
transcriptomic data

What does it mean for a pair of genes to be close?
Given this, how do we define groups?

Two broad classes of methods typically used:

1 Centroid-based clustering (K-means and hierarchical clustering)

2 Model-based clustering (mixture models)

andrea.rau@jouy.inra.fr 9 / 45



Unsupervised clustering

Unsupervised clustering

Objective

Define homogeneous and well-separated groups of genes from
transcriptomic data

What does it mean for a pair of genes to be close?
Given this, how do we define groups?

Two broad classes of methods typically used:

1 Centroid-based clustering (K-means and hierarchical clustering)

2 Model-based clustering (mixture models)

andrea.rau@jouy.inra.fr 9 / 45



Unsupervised clustering Centroid-based clustering: K-means, HCA

Outline
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Unsupervised clustering Centroid-based clustering: K-means, HCA

Similarity measures

Similarity between genes is defined with a distance:

Euclidian distance (L2 norm): d2(yi , yi ′) =
∑p

`=1(yi` − yi ′`)
2

⇒ Note: sensitive to scaling and differences in average expression
level

Pearson correlation coefficient: dpc(yi , yi ′) = 1− ρi ,i ′
Spearman rank correlation coefficient: as above but replace yij with
rank of gene i across all samples j

Absolute or squared correlation: dac(yi , yi ′) = 1− |ρi ,i ′ | or
dsc(yi , yi ′) = 1− ρ2

i ,i ′

Mahalanobis distance: dMahalanobis(yi , yi ′) = (yi − yi ′)′Σ−1(yi − yi ′)

Manhattan distance: dManhattan(yi , yi ′) =
∑p

`=1 |yi` − yi ′`|
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Unsupervised clustering Centroid-based clustering: K-means, HCA

Inertia measures

Homogeneity of a group is defined with an inertia criterion:

Let yG be the centroid of the dataset and yCk
the centroid of group

Ck

Inertia =
n∑

i=1

d2(yi , yG )

=
K∑

k=1

∑
i∈Ck

d2(yi , yCk
) +

K∑
k=1

nkd
2(yCk

, yG )

= within-group inertia + between-group inertia
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Unsupervised clustering Centroid-based clustering: K-means, HCA

In practice...

Objective: cluster n genes into K groups,
maximizing the between-group inertia

Exhaustive search is impossible

Two algorithms are often used
1 K-means
2 Hierarchical clustering
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Unsupervised clustering Centroid-based clustering: K-means, HCA

K-means algorithm

Initialization K centroids are chosen ramdomly or by the user

Iterative algorithm

1 Assignment Each gene is assigned to a group according to its
distance to the centroids.

2 Calculation of the new centroids

Stopping criterion: when the maximal number of iterations is achived OR
when groups are stable

Properties

Rapid and easy

Results depend strongly on initialization

Number of groups K is fixed a priori
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Unsupervised clustering Centroid-based clustering: K-means, HCA

K-means illustration

Animation: http://shabal.in/visuals/kmeans/1.html
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Unsupervised clustering Centroid-based clustering: K-means, HCA

K-means algorithm: Choice of K?

Elbow plot of within-sum of squares: examine the percentage of
variance explained as a function of the number of clusters

Gap statistic: estimate change in within-cluster dispersion compared
to that under expected reference null distribution

Silhouette statistic: measure of how closely data within a cluster is
matched and how loosely it is matched to neighboring clusters
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Unsupervised clustering Centroid-based clustering: K-means, HCA

Hierarchical clustering analysis (HCA)

Objective Construct embedded partitions of (n, n − 1, . . . , 1) groups,
forming a tree-shaped data structure (dendrogram)
Algorithm

Initialization n groups for n genes

At each step:

• Closest genes are clustered
• Calculate distance between this new group and the

remaining genes
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Unsupervised clustering Centroid-based clustering: K-means, HCA

Distances between groups for HCA

Distances between groups

Single-linkage clustering:

D(Ck ,Ck ′) = min
x∈Ci

min
x ′∈Ci′

d2(x , x ′)

Complete-linkage clustering:

D(Ck ,Ck ′) = max
x∈Ci

max
x ′∈Ci′

d2(x , x ′)

Ward distance:

D(Ck ,Ck ′) = d2(xCk
, xCk′ )×

nk nk ′

nk + nk ′

where nk is the number of genes in group Ck
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Unsupervised clustering Centroid-based clustering: K-means, HCA

Distances between groups for HCA

Source: http://compbio.pbworks.com/w/page/16252903/Microarray%20Clustering%20Methods%20and%20Gene%20Ontology
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Unsupervised clustering Centroid-based clustering: K-means, HCA

HCA: additional details

Properties:

HCA is stable since there is no initialization step
K is chosen according to the tree
Results strongly depend on the chosen distances
Branch lengths are proportional to the percentage of inertia loss ⇒ a
long branch indicates that the 2 groups are not homogeneous
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Unsupervised clustering Model-based clustering
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Unsupervised clustering Model-based clustering

Model-based clustering

Probabilistic clustering models : data are assumed to come from
distinct subpopulations, each modeled separately

Rigourous framework for parameter estimation and model selection

Output: each gene assigned a probability of cluster membership
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Unsupervised clustering Model-based clustering

Key ingredients of a mixture model

Let y = (y1, . . . , yn) denote the observations with yi ∈ Rp

We introduce a latent variable to indicate the group from which each
observation arises:

Zi ∼M(n;π1, . . . , πK ),

P(Zi = k) = πk

Assume that yi are conditionally independent given Zi

Model the distribution of yi |Zi using a parametric distribution:

(yi |Zi = k) ∼ f (·; θk)
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Unsupervised clustering Model-based clustering

Questions around the mixtures

Model: what distribution to use for each component ?
 depends on the observed data.

Inference: how to estimate the parameters ?
 usually done with an EM-like algorithm (Dempster et al., 1977)

Model selection: how to choose the number of components ?

A collection of mixtures with a varying number of components is
usually considered
A penalized criterion is used to select the best model from the
collection
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Unsupervised clustering Model-based clustering

Clustering data into components

Maximum a posteriori (MAP) rule: Assign genes to the component with
highest conditional probability τik :

τik (%) k = 1 k = 2 k = 3

i = 1 65.8 34.2 0.0
i = 2 0.7 47.8 51.5
i = 3 0.0 0.0 100
... ... ... ...
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Unsupervised clustering Model-based clustering

Model selection for mixture models
Asymptotic penalized criteria7

BIC aims to identify the best model K wrt the global fit of the data
distribution:

BIC (K ) = − logP(y|K , θ̂K ) +
νK
2

log(n)

where νK is the # of free parameters and θ̂K is the MLE of the model
with K clusters

ICL aims to identify the best model K wrt cluster separation:

ICL(K ) = BIC (K ) +

(
−

n∑
i=1

K∑
k=1

τik log τik

)

 Select K that minimizes BIC or ICL (but be careful about their sign!)
7Asymptotic: approaching a given value as the number of observations n → ∞
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Unsupervised clustering Model-based clustering

Model selection for mixture models: BIC vs ICL
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Unsupervised clustering Model-based clustering

Model selection for mixture models
Non-asymptotic penalized criteria

Recent work has been done in a non-asymptotic context using the slope
heuristics (Birgé & Massart, 2007):

SH(K ) = logP(y|K , θ̂K ) + κpenshape(K )

In large dimensions, linear behavior of D
n 7→ −γn(ŝD)

Estimation of slope to calibrate κ̂ in a data-driven manner
(Data-Driven Slope Estimation = DDSE), capushe R package
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Unsupervised clustering Mixture models for RNA-seq data
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Unsupervised clustering Mixture models for RNA-seq data

Finite mixture models for RNA-seq

Assume data y come from K distinct subpopulations, each modeled
separately:

f (y|K ,ΨK ) =
n∏

i=1

K∑
k=1

πk fk(yi ;θk)

π = (π1, . . . , πK )′ are the mixing proportions, where
∑K

k=1 πk = 1

fk are the densities of each of the components

For microarray data, we often assume yi |k ∼ MVN(µk ,Σk)

What about RNA-seq data?
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Unsupervised clustering Mixture models for RNA-seq data

Finite mixture models for RNA-seq data

f (y|K ,ΨK ) =
n∏

i=1

K∑
k=1

πk fk(yi |θk)

For RNA-seq data, we must choose the family & parameterization of fk(·):

1 Directly model read counts (HTSCluster):

yi |Zi = k ∼
J∏

j=1

Poisson(yij |µijk)

2 Apply appropriately chosen data transformation (coseq):

g(yi )|Zi = k ∼ MVN(µk ,Σk)
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Unsupervised clustering Mixture models for RNA-seq data

Poisson mixture models for RNA-seq (Rau et al., 2015)

yi |Zi = k ∼
J∏

j=1

Poisson(yij |µijk)

Question: How to parameterize the mean µijk to obtain meaningful
clusters of co-expressed genes?

µijk = wiλjksj

wi : overall expression level of observation i (yi ·)

λk = (λjk) : clustering parameters that define the profiles of genes in
cluster k (variation around wi )

sj : normalized library size for sample j , where
∑

j sj = 1
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Unsupervised clustering Mixture models for RNA-seq data

Behavior of model selection in practice for RNA-seq
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Unsupervised clustering Mixture models for RNA-seq data

Discussion of PMM for RNA-seq data

Advantages:

1 Directly models counts (no data transformation necessary)

2 Clusters interpreted in terms of profiles around mean expression

3 Implemented in HTSCluster package on CRAN (v1.0.8)

4 Promising results on real data...

Limitations:

1 Slope heuristics requires a very large collection of models to be fit

2 Restrictive assumption of conditional independence among samples

3 Cannot model per-cluster correlation structures

4 Poisson distribution requires assuming that mean = variance
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Unsupervised clustering Mixture models for RNA-seq data

Correlation structures in RNA-seq data

Example: data from Mach et al. (2014) on site-specific gene expression along the gastrointestinal tract of 4 healthy piglets
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Unsupervised clustering Mixture models for RNA-seq data

Gaussian mixture models for RNA-seq

Idea: Transform RNA-seq data, then apply Gaussian mixture models

Several data transformations have been proposed for RNA-seq to render
the data approximately homoskedastic:

log2(yij + c)

Variance stabilizing transformation (DESeq)

Moderated log counts per million (edgeR)

Regularized log-transformation (DESeq2)

... but recall that we wish to cluster the normalized profiles pij =
yij/sj∑
` yi`/sj
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Unsupervised clustering Mixture models for RNA-seq data

Remark: transformation needed for normalized profiles

Note that the normalized profiles are compositional data, i.e. the sum
for each gene pi · = 1

This implies that the vector pi is linearly dependent ⇒ imposes
constraints on the covariance matrices Σk that are problematic for
the general GMM

As such, we consider a transformation on the normalized profiles to
break the sum constraint:

p̃ij = g(pij) = arcsin
(√

pij
)

And fit a GMM to the transformed normalized profiles:

f (p̃|K ,ΨK ) =
n∏

i=1

K∑
k=1

πkφ(p̃i |θk ,Σk)
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Unsupervised clustering Mixture models for RNA-seq data

Running the PMM or GMM for RNA-seq data with coseq

> library(coseq)

>

> GMM <- coseq(counts, K=2:10, model="Normal",

> transformation="arcsin")

> summary(GMM)

> plot(GMM)

>

> ## Note: indirectly calls HTSCluster for PMM

> PMM <- coseq(counts, K=2:10, model="Poisson",

> transformation="none")

> summary(PMM)

> plot(PMM)
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Unsupervised clustering Mixture models for RNA-seq data

Examining GMM results
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Unsupervised clustering Mixture models for RNA-seq data

Evaluation of clustering quality
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Unsupervised clustering Mixture models for RNA-seq data
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Conclusion / discussion

Conclusions: RNA-seq co-expression

Some practical questions to consider prior to co-expression analyses:

Should all genes be included?
Screening via differential analysis or a filtering step (based on mean
expression or coefficient of variation)...
 Usually a good idea, genes that contribute noise will affect results!

What to do about replicates?
Average, or model each one independently?
 Note that the PMM makes use of experimental condition labels,
but the GMM does not...
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Conclusion / discussion

A note about evaluating clustering approaches8

Clustering results can be evaluated based on internal criteria (e.g.,
statistical properties of clusters) or external criteria (e.g., functional
annotations)

Preprocessing details (normalization, filtering, dealing with missing
values) can affect clustering outcome

Methods that give different results depending on the initialization
should be rerun multiple times to check for stability

Most clustering methods will find clusters even when no actual
structure is present ⇒ good idea to compare to results with
randomized data!

8D’haeseller, 2005
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Conclusion / discussion

A note about validating clustering approaches on real data

Difficult to compare several clustering algorithms on a given dataset
(and difficult to discern under which circumstances a particular
method should be preferred)

Adjusted Rand index: measure of similarity between two data
clusterings, adjusted for the chance grouping of elements
 ARI has expected value of 0 in the case of a random partition, and
is bounded above by 1 in the case of perfect agreement

Difficult to evaluate how well a given clustering algorithm performs on
transcriptomic data

No one-size-fits-all solution to clustering, and no consensus of what a
“good” clustering looks like ⇒ use more than one clustering
algorithm!
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Conclusion / discussion

Final thoughts9

9Jain & Dubes, 1988
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Conclusion / discussion

Acknowledgements & References

MixStatSeq ANR-JCJC grant

Thanks to Gilles Celeux (Inria Saclay - Île-de-France), Cathy Maugis-Rabusseau
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Real data analysis: Embryonic fly development

modENCODE project to provide functional annotation of Drosophila
(Graveley et al., 2011)

Expression dynamics over 27 distinct stages of development during
life cycle studied with RNA-seq

12 embryonic samples (collected at 2-hr intervals over 24 hrs) for
13,164 genes downloaded from ReCount database (Frazee et al.,
2011)



Real data analysis: Embryonic fly development

Screen genes to include only DE genes (DESeq2)

K-means clustering

Hierarchical clustering

Gaussian mixture model on transformed normalized expression profiles

Keep in mind the advantages / disadvantages of different approaches:
speed, stability, robusntess, interpretability, model selection, ...
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