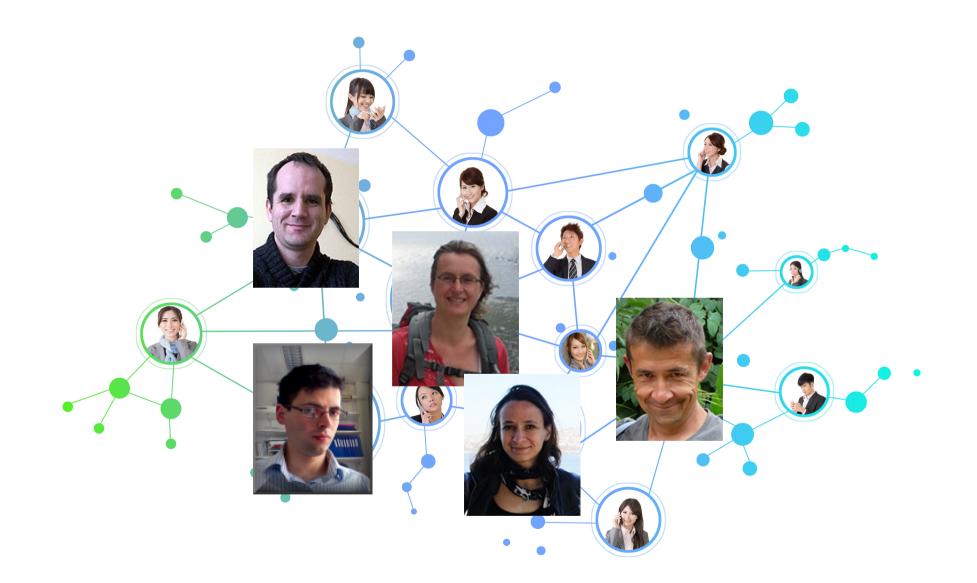

From gene expression du genetic network

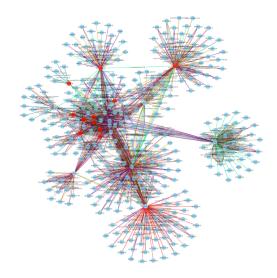
Françoise Monéger

Laboratoire de Reproduction et Développement des Plantes Ecole Normale Supérieure de Lyon

SPS Juillet 2016

My name is Françoise Monéger


I work at Ecole Normale Supérieure de Lyon in the Laboratory Plant Reproduction and development


I am good at developing molecular approaches to understand flower development, in particular identifying targets of transcription factors controlling flower development

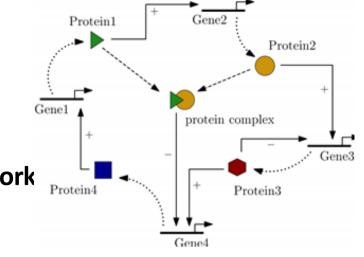
I am interested in investigating how modeling of gene regulatory networks can help biologists to increase their knowledge of their favorite biological system

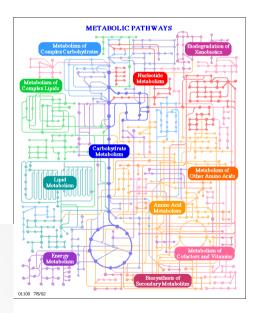
I come mainly for sharing my experience of gene regulatory networks, learn from others who have a different approach of these networks, in particular with statistical tools

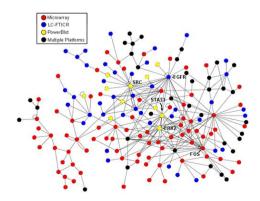
Networks are everywhere!

Biological networks

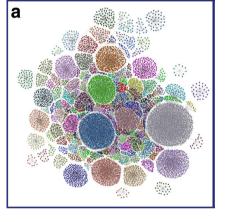
Protein-protein interaction network

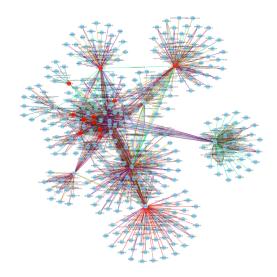

Gene regulatory networks


Gene co-expression networks


Metabolic networks

Signaling networks

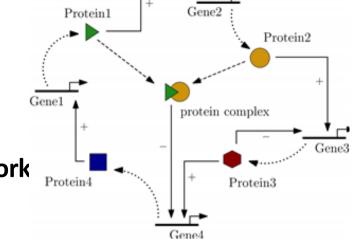

Neuronal networks

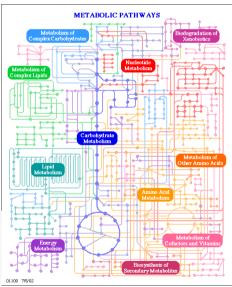


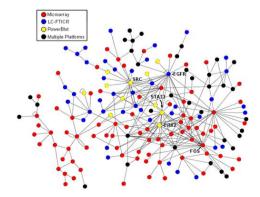
а

Biological networks

Protein-protein interaction network

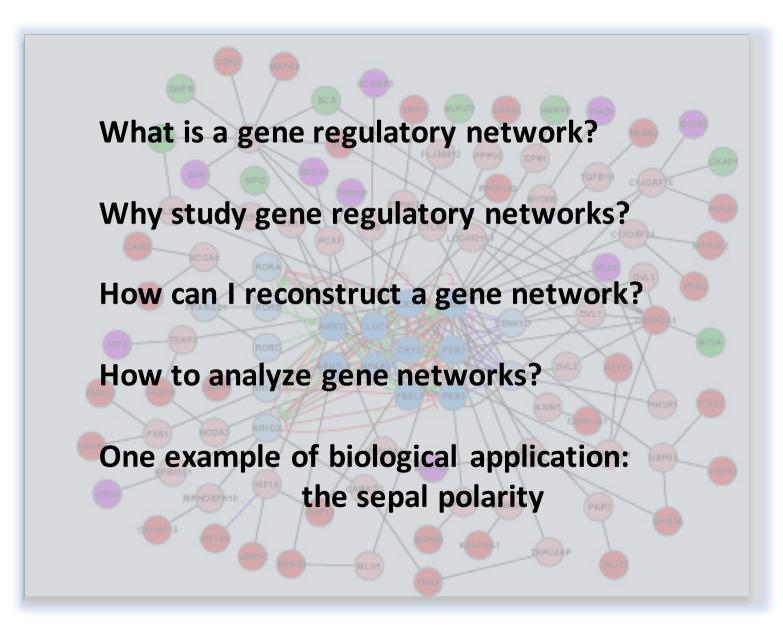

Gene regulatory networks

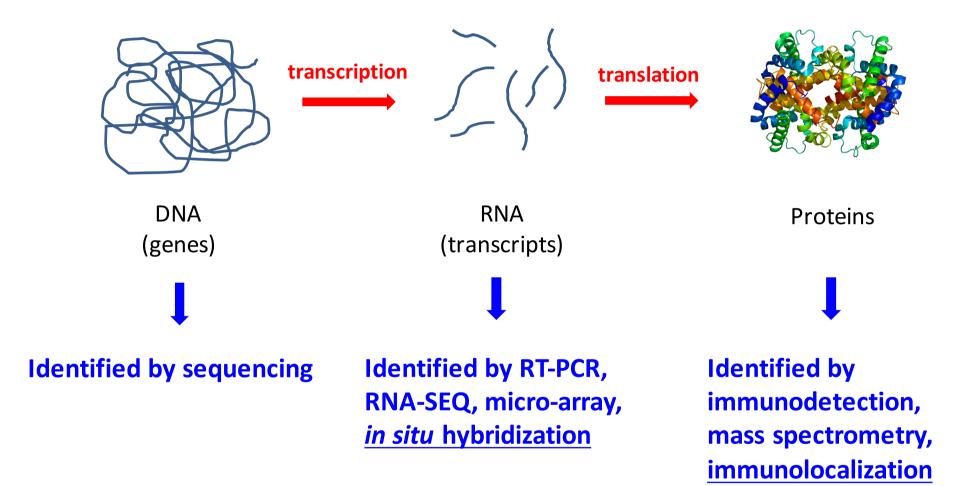

Gene co-expression networks


Metabolic networks

Signaling networks

Neuronal networks

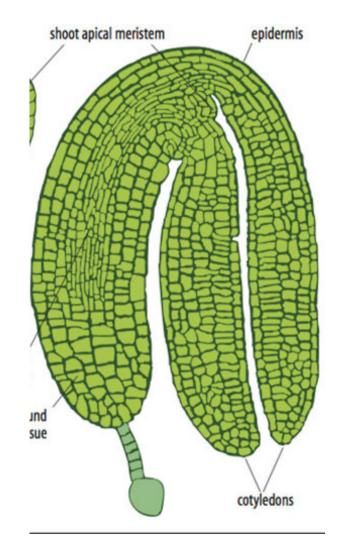


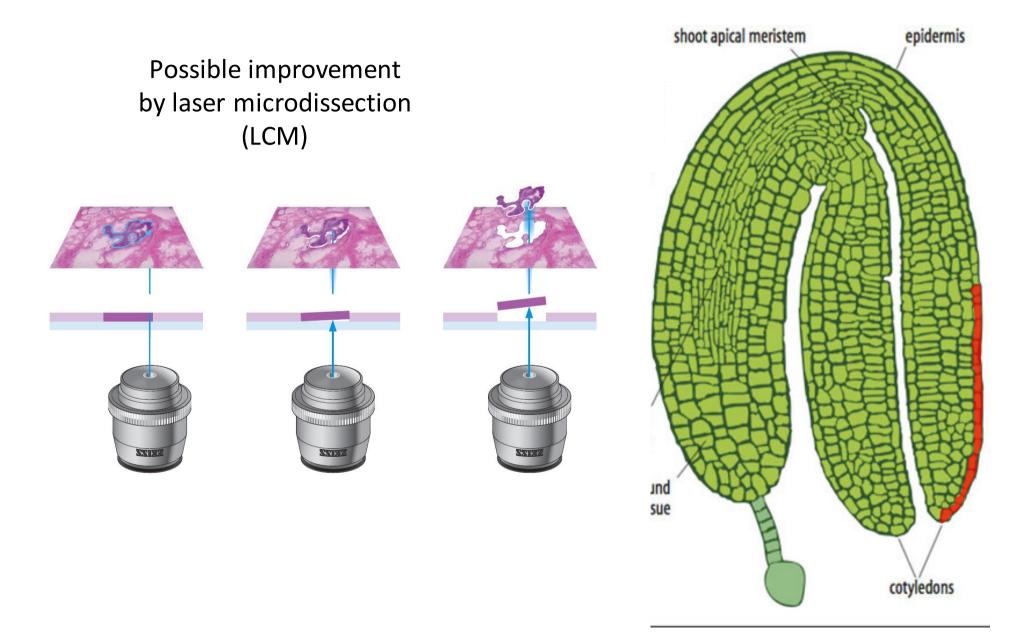


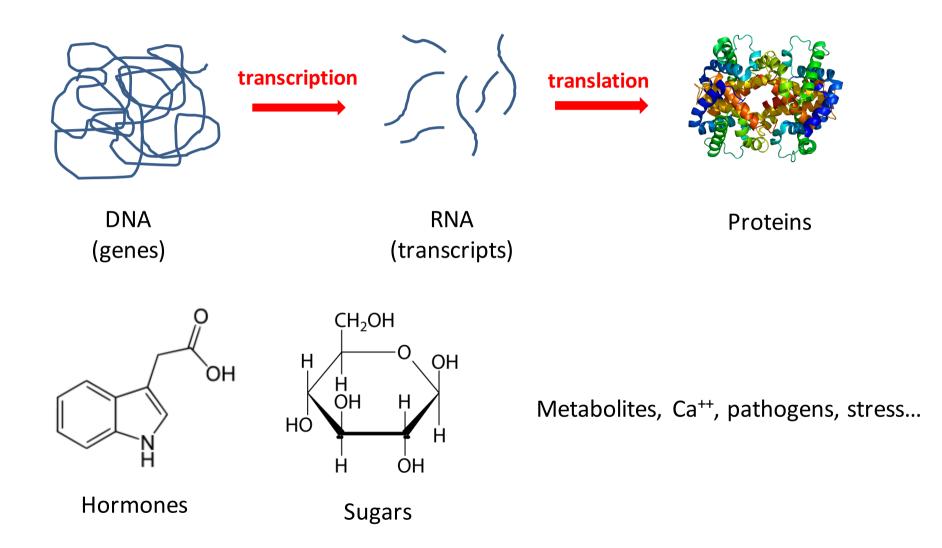
If one of these questions is of interest to you, stay with us !!

1- What is a gene regulatory network?

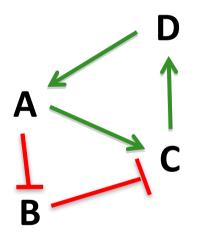
A gene (or genetic) regulatory network (GRN) is a collection of molecular regulators that interact with each other and with other substances in the cell to govern the expression levels of mRNA and proteins. These play a central role in morphogenesis, the creation of body structures, which in turn is central to evolutionary developmental biology (evo-devo).




RNA-SEQ, microarrays, RT-PCR require RNA extraction

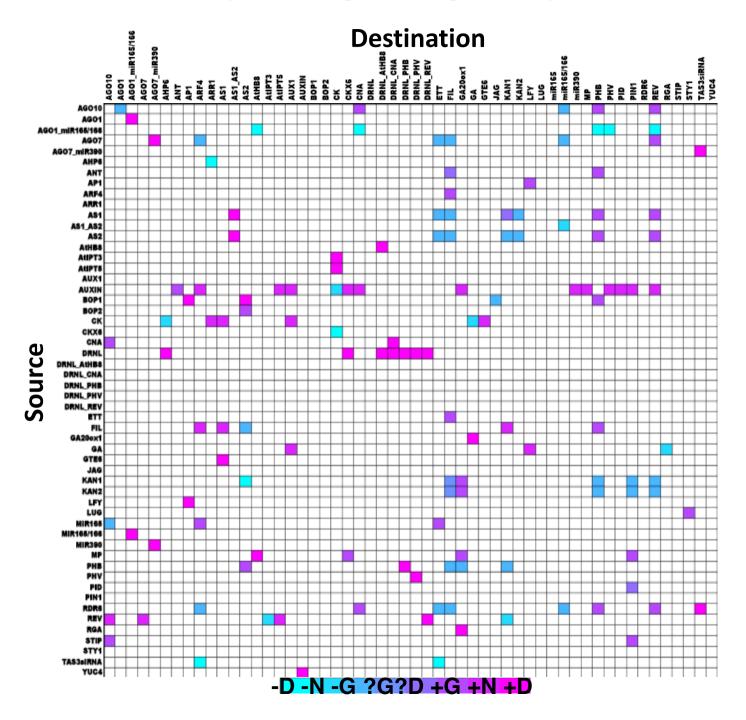

Immunodetection and mass spectrometry require protein extraction

Cells with different transcriptome and proteome will be mixted together

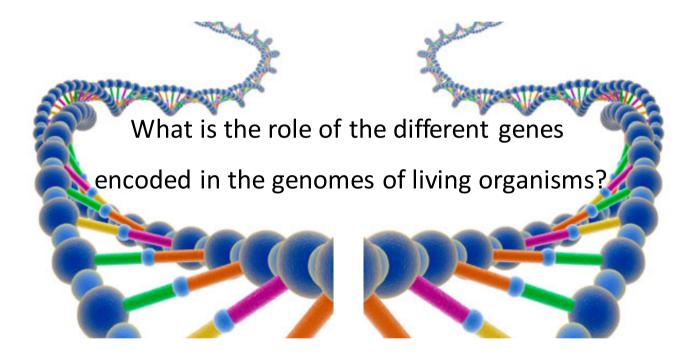


How to represent gene regulatory network?

Gene regulatory networks are commonly represented as graphs of interactions: the nodes are connected by interactions.



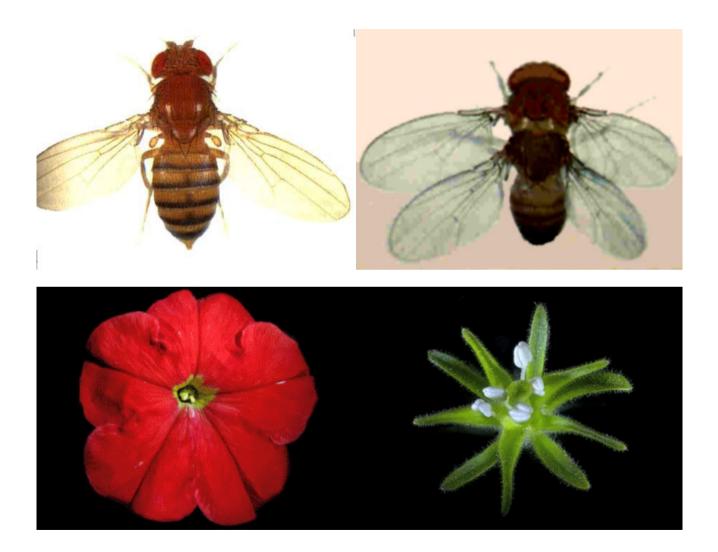
A node can be any molecule but often represents DNA, RNA, protein or complexe of them


The interactions can be direct or indirect

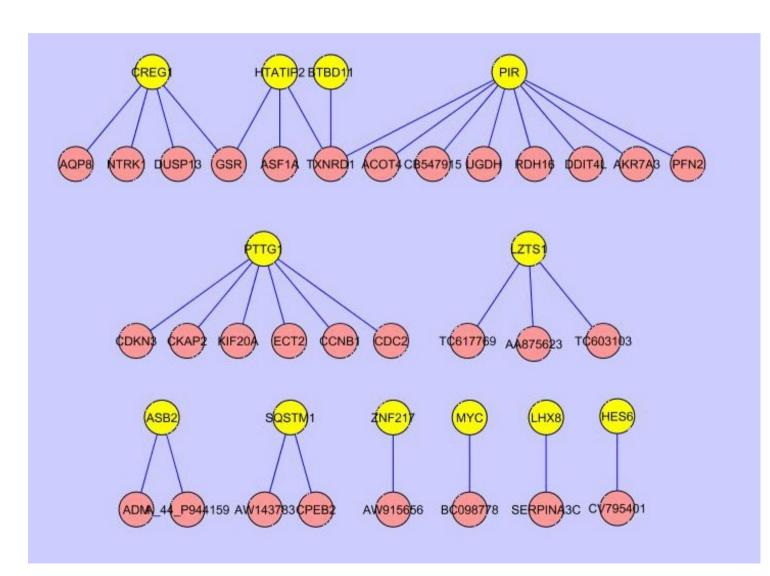
The interactions are oriented > circuit

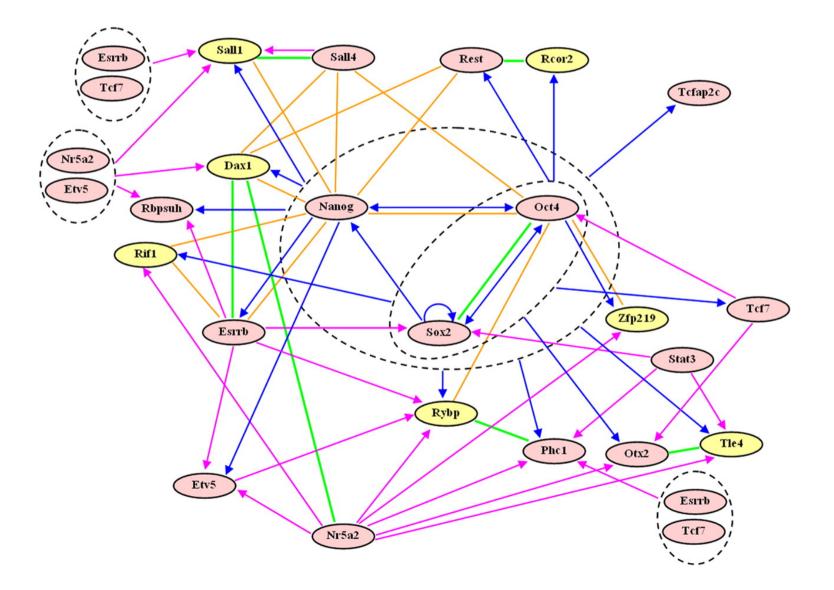
How to represent gene regulatory network?

2- Why study gene regulatory networks?



To answer this question, biologists have a robust method:


they inactivate a given gene and see what is does


Genetic approaches widely used since the 80's

These approaches give an impression of verticality: 1 gene / 1 phenotype

However, biological processes are controlled by gene regulatory networks rather than isolated genes

Living cells are self-organising systems

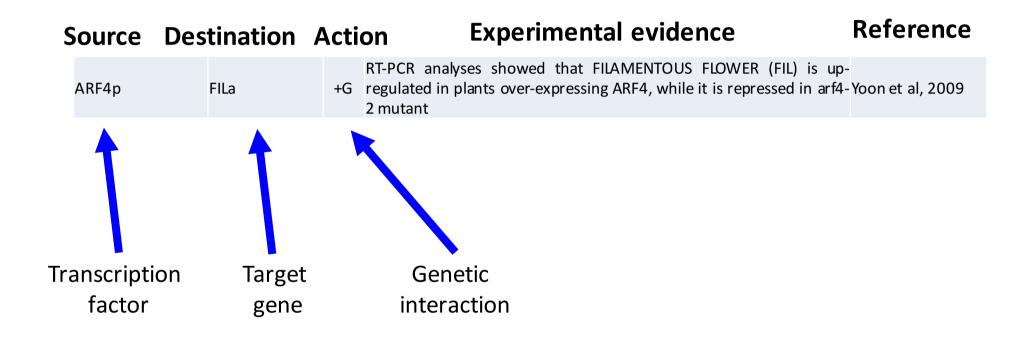
This self-organization is encoded in the properties

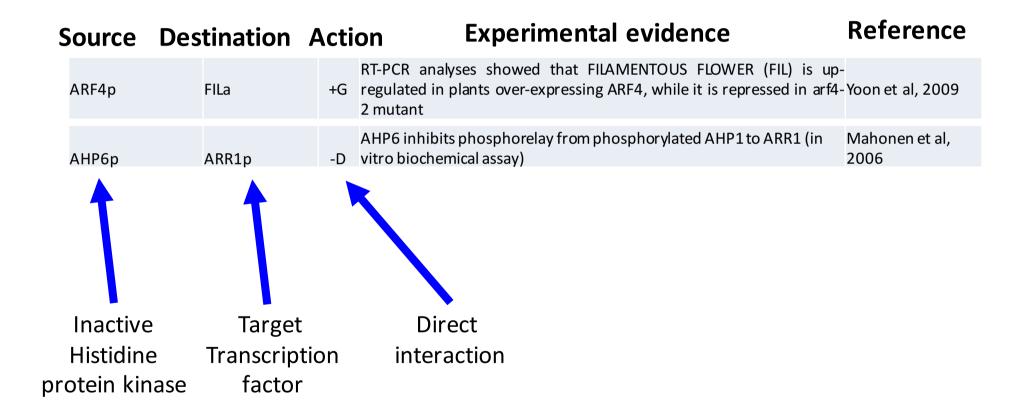
of the gene regulatory networks:

- Each element is doing something on another
- Each element is itself regulated by another
- Presence of closed regulatory circuits

Is it clear what is a gene regulatory network ?

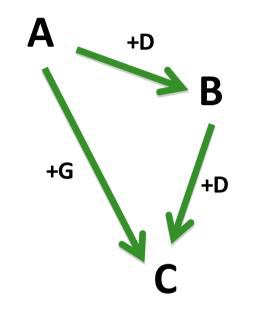
Why it is important to study them ?


3- How can I reconstruct a gene network?


3- How can I reconstruct a gene network?

Many different ways !!

- Define a given process to study
- List the regulatory elements known to participate
- List the interactions linked to these elements

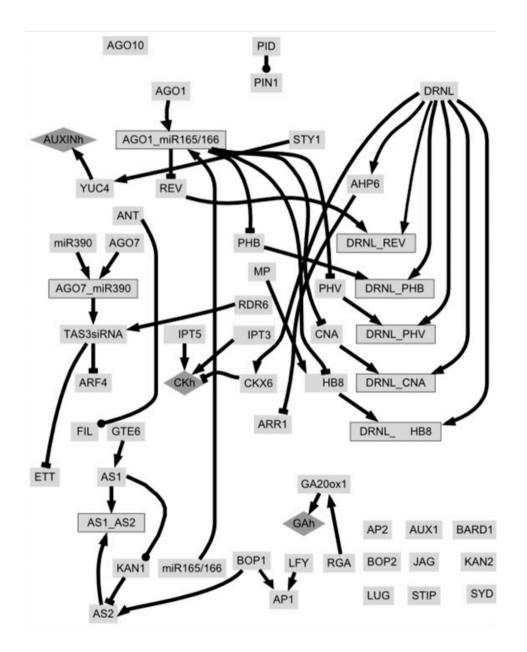


9	Source D	estination	Acti	on Experimental evidence	Reference
	ARF4p	FILa	+G	RT-PCR analyses showed that FILAMENTOUS FLOWER (FIL) is up- regulated in plants over-expressing ARF4, while it is repressed in arf4- 2 mutant	
	АНР6р	ARR1p	-D	vitro biochemical assay)	Mahonen et al, 2006
	BOP1p	AS2a	+D	BOP1 and BOP2 are necessary and sufficient to induce high-level expression of AS2 (1). BOP1 directly associates to the AS2 promoter (ChIP, 2)	1- Ha et al, 2007 2- Jun et al, 2010
Tr	anscription factor	Target gene		Direct interaction	

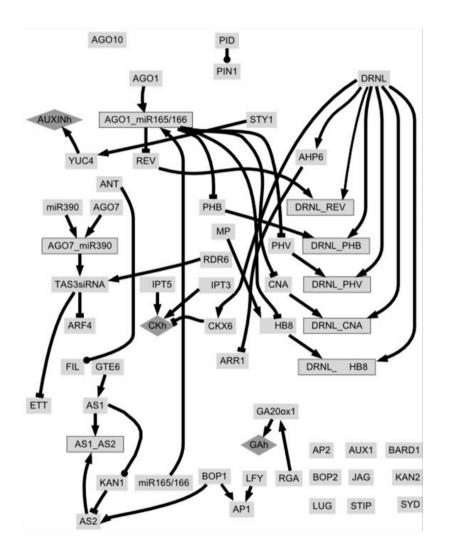
Source	Destination	Acti	on Experimental evidence	Reference
ARF4p	FILa	+G	RT-PCR analyses showed that FILAMENTOUS FLOWER (FIL) is up regulated in plants over-expressing ARF4, while it is repressed in arf4 2 mutant	
AHP6p	ARR1p	-D		Mahonen et al, 2006
BOP1p	AS2a	+D	BOP1 and BOP2 are necessary and sufficient to induce high-level expression of AS2 (1). BOP1 directly associates to the AS2 promote (ChIP, 2)	el r 2- Jun et al, 2007 2- Jun et al, 2010
AtlPT5p	CKh	+D	Enzymes which catalyse the first and limiting step of cytokinin biosynthesis in Arabidopsis thaliana are ATP/ADI isopentenyltransferases and their homologs, AtIPT1 and AtIPT3-AtIPT3	P 2- Kakimoto 2003
Enzyme	e Hormoi	ne	Direct interaction	

Source	Destination	Acti	on Experimental evidence	Reference
ARF4p	FILa	+G	RT-PCR analyses showed that FILAMENTOUS FLOWER (FIL) is up regulated in plants over-expressing ARF4, while it is repressed in arf4 2 mutant	
AHP6p	ARR1p	-D		Mahonen et al, 2006
BOP1p	AS2a	+D	BOP1 and BOP2 are necessary and sufficient to induce high-level expression of AS2 (1). BOP1 directly associates to the AS2 promote (ChIP, 2)	l 1- Ha et al, 2007 2- Jun et al, 2010
AtlPT5a	CKh	+D		2- Kakimoto 2003
AUXINh	СКХба	+N	CKX6 expression is induced by auxin (microarray data, 1, 2)	1- Sawa et al, 2002 2- Overvoorde et al, 2005
Hormon	e Target gene		Induction	

Consider the nature of the interaction: why?



Risk of redundancy if you mix direct and indirect interactions


Evaluate the reliability of experimental data

- Accumulation of different technics to support the interaction
- Contradicting data between different labs?

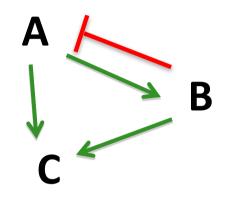
From this list, you can draw a graph

It appears that information is lacking

Some elements have no input Some elements have no output There is no closed circuits

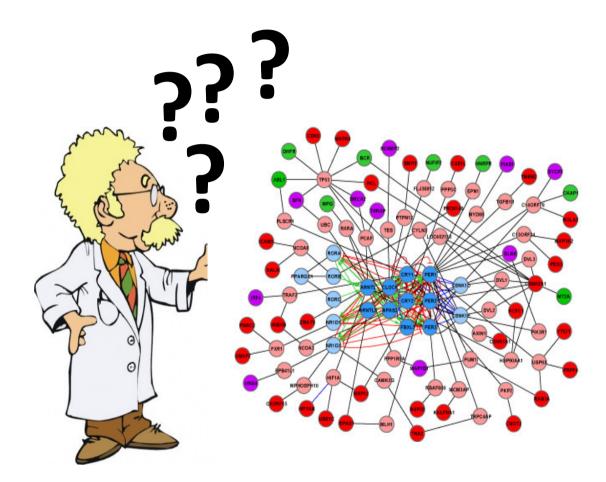
> A biological network must have all these properties!

Solution 1 Try to fill the gaps > back to the litterature or to the bench

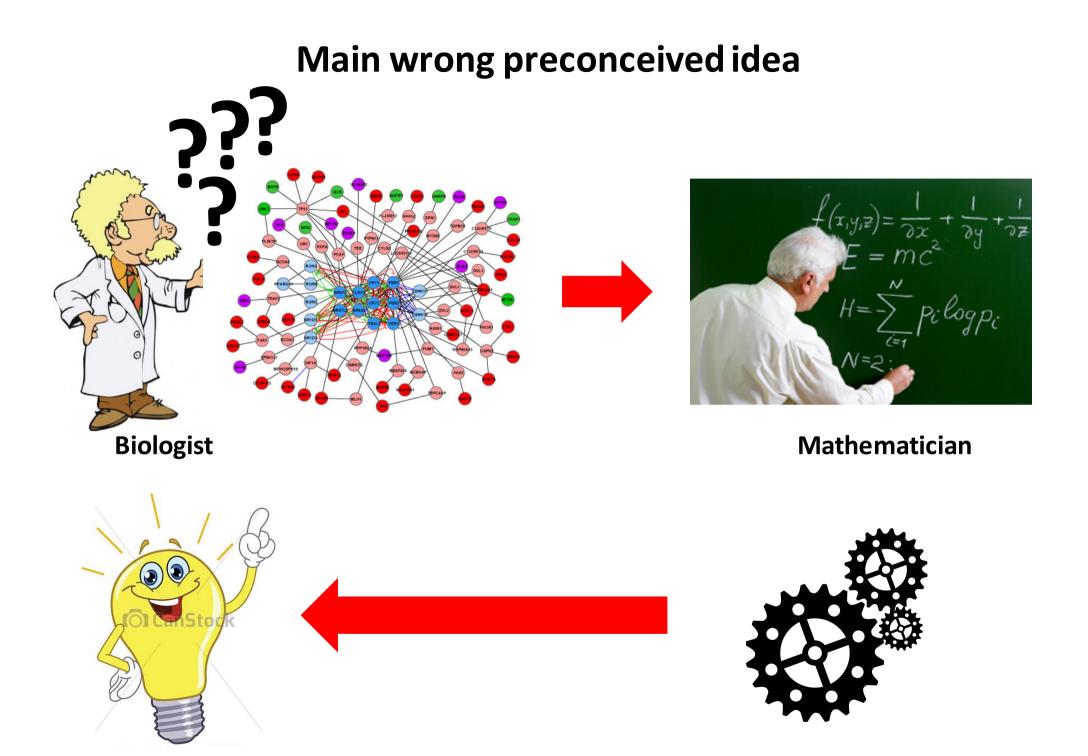

Solution 2

focuse on a subset of interactions

for which requirements are fullfilled


- inputs for all the elements
- closed circuits

Once the minimal properties are fullfilled



Modeling can reveal the behaviors of your network

4- How to analyze gene networks?

Biologist

A model in itself is useless

It is by building the model that you learn how your system works!

It's like coffee again !!!

Many methods exist to model gene regulatory networks

Quantitative models

Require informations we usually don't have (half life for RNA and proteins, concentrations...)

Heavy in terms of computing time

Can only compute small networks

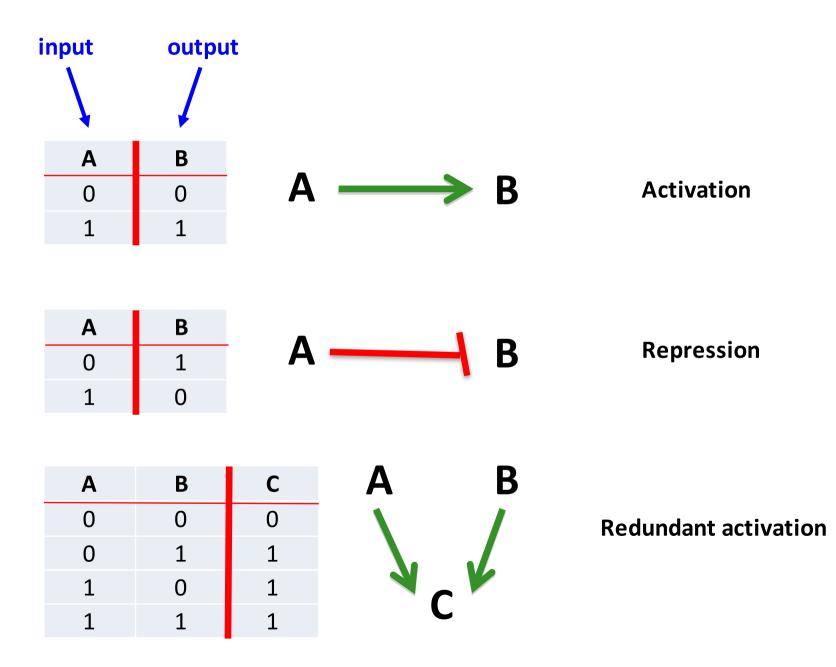
Require technical skills (differential equations)

Boolean network

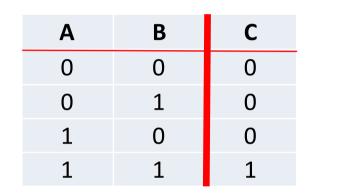
Definition: A **Boolean network** consists of a discrete set of Boolean variables each of which has a Boolean function (possibly different for each variable) assigned to it which takes inputs from a subset of those variables and output that determines the state of the variable it is assigned to.

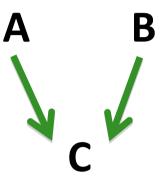
Boolean network

Drawbacks: the nodes can only be ON or OFF (1 or 0)

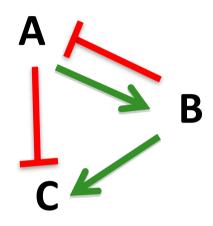

Advantages: - easy to use

- can be applied to big networks

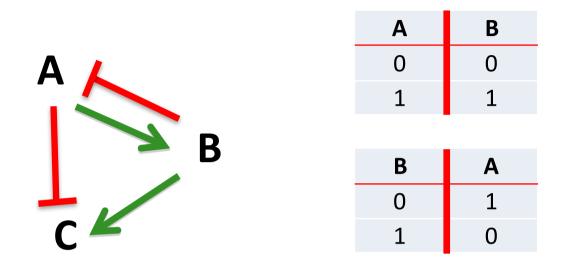

- compatible with most biological data which are often


not quantitative

How does it work? It uses logical tables


How does it work? It uses logical tables

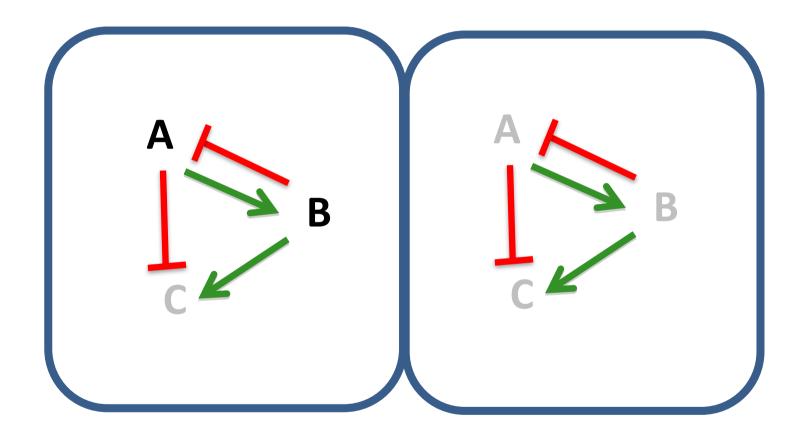
Cooperative activation (protein dimer)


Logical tables

Α	В
0	0
1	1
	_
В	Α
B 0	A 1

Α	В	С
0	0	0
0	1	1
1	0	0
1	1	0

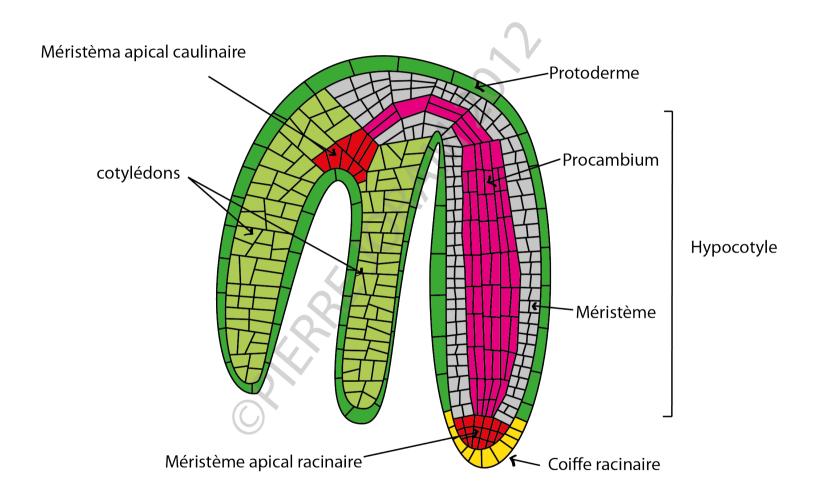
Logical tables and steady states



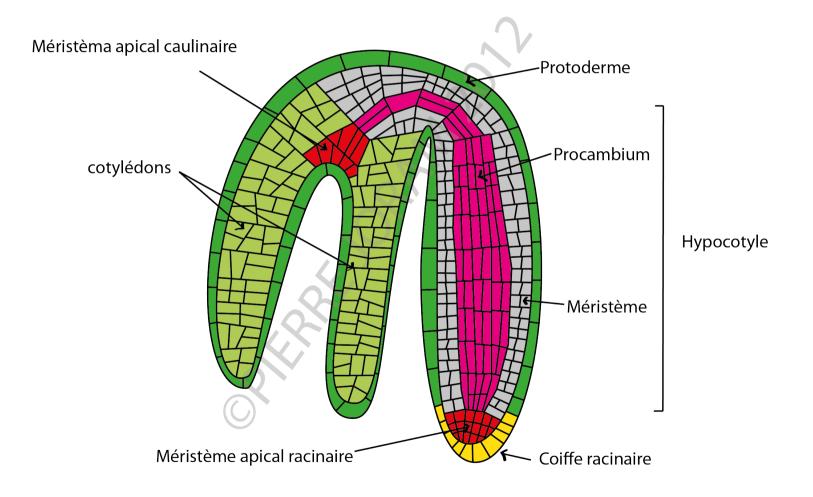
Step 1: A switched ON Step 2: B switched ON by A Step 3: A switched OFF by B and C switched ON by B Step 4: B switched OFF by lack of A Step 5: C switched OFF by lack of B

Α	В	С
0	0	0
0	1	1
1	0	0
1	1	0

Stable state with all elements OFF unless A is ON > cycle

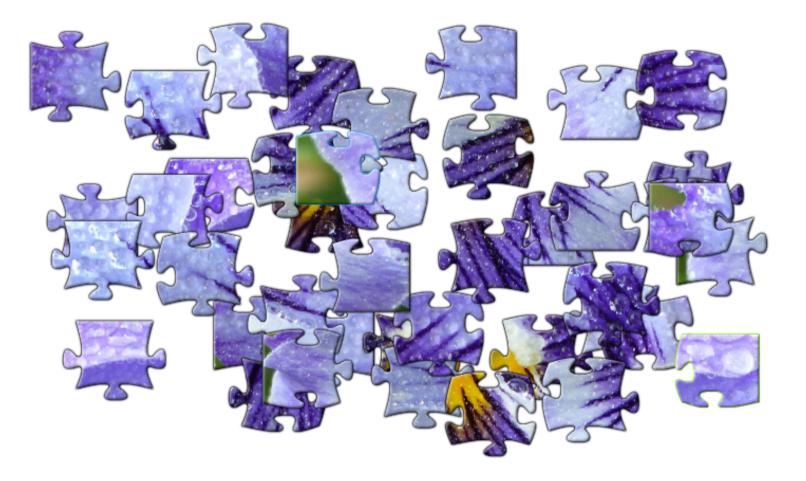

The interaction network is the same in all the cells but the state can be different

Communication between cells affect the state of the network

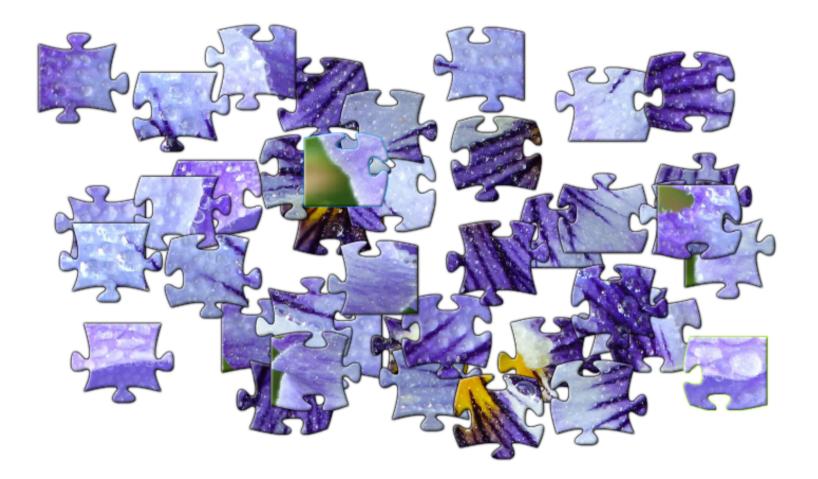

Examples?

Back to biology and steady states

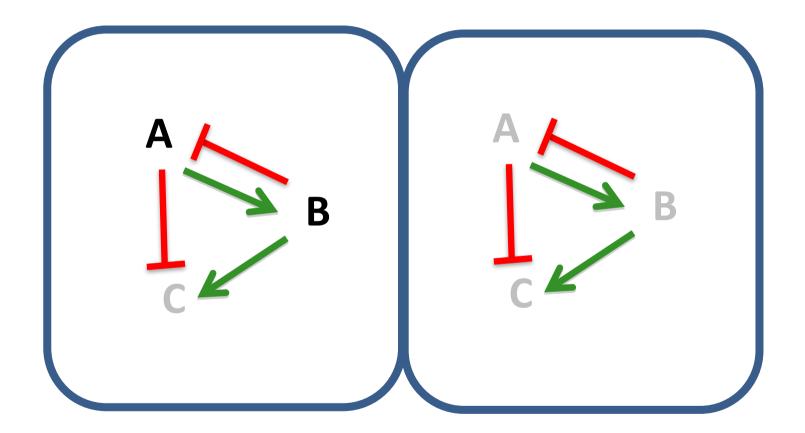
The steady states correspond to the molecular state of a cells


Development can be seen as a succession of molecular steady states evolving through time autonomously

Time for break



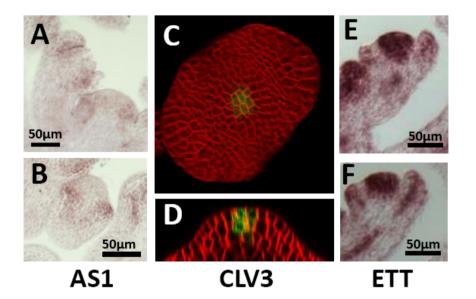
One example of biological application: the sepal polarity

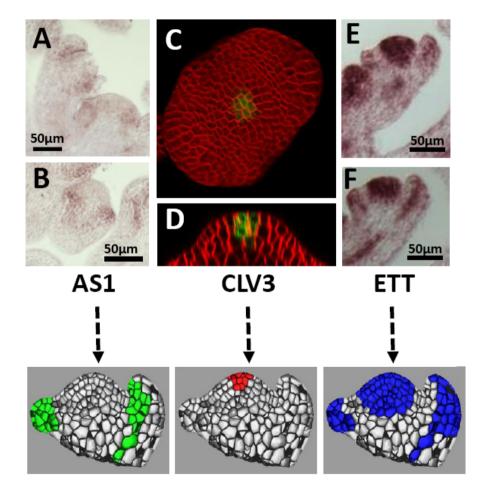


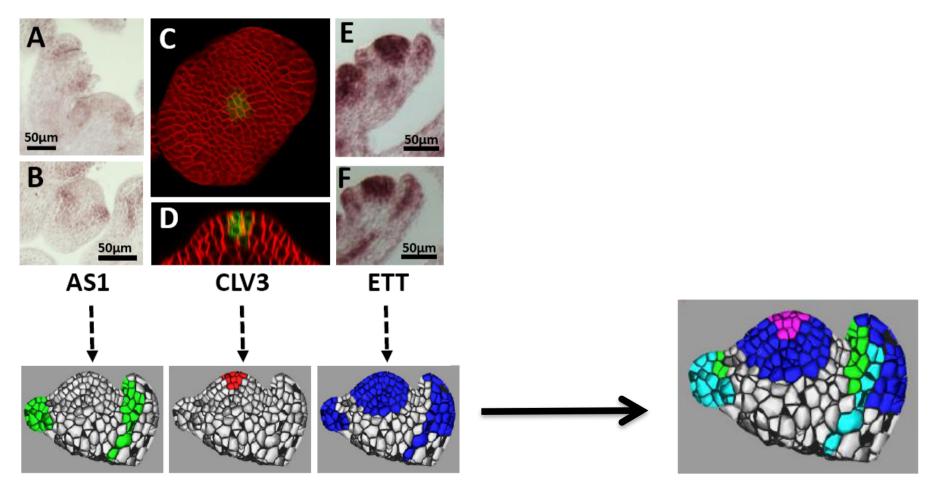
Increasing the number of pieces does not necessarily increase our knowledge

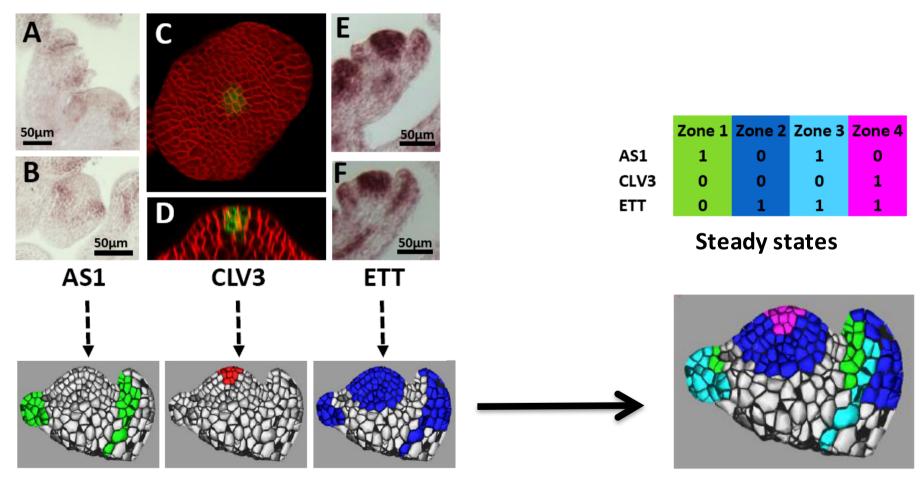
How to integrate heterogeneous data in a coherent manner?

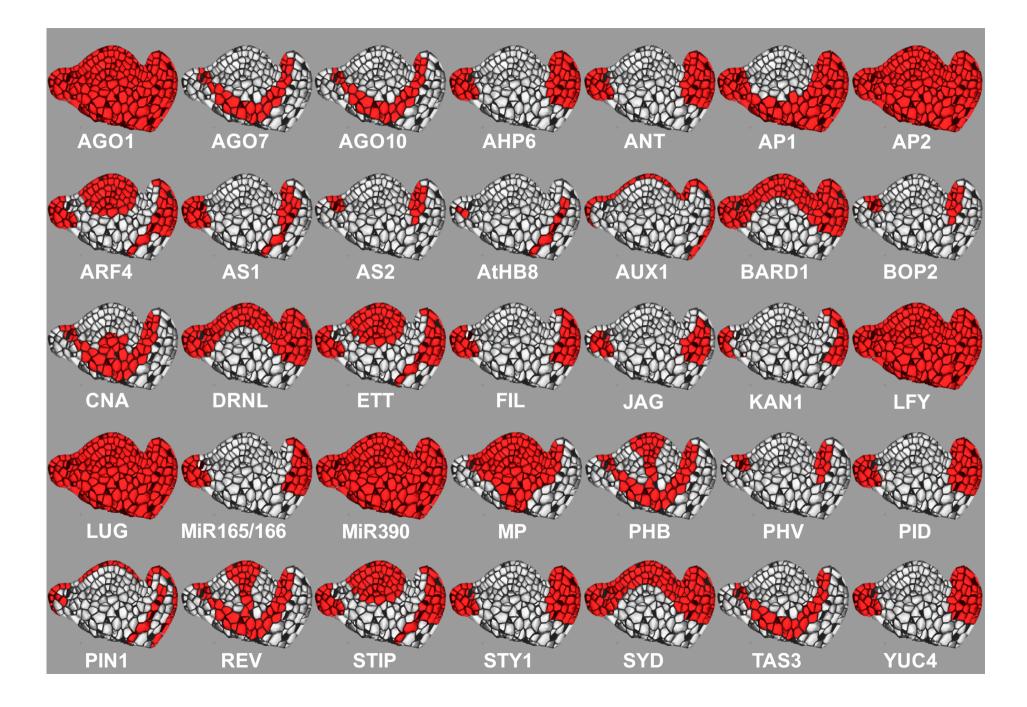
The interaction network is the same in all the cells but the state can be different




Communication between cells affect the state of the network

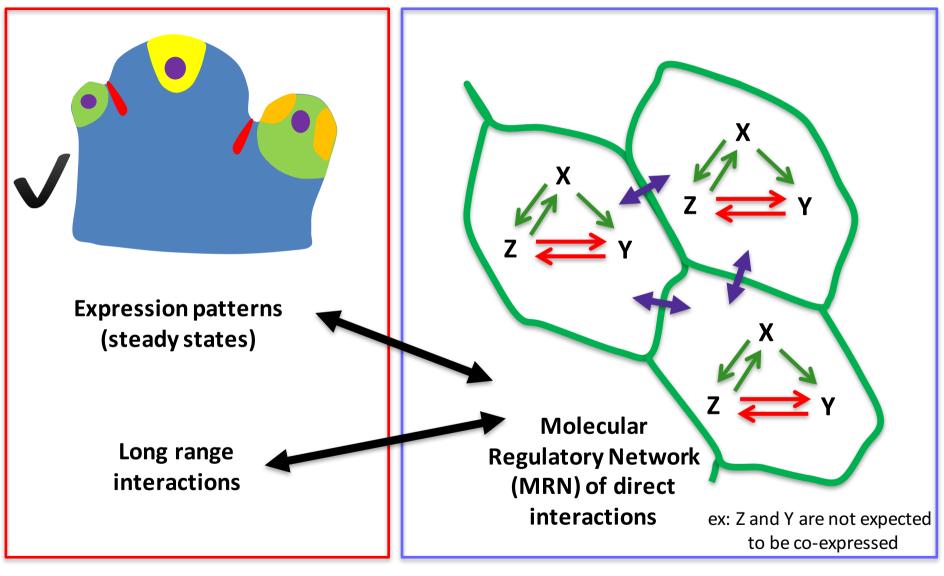

How to construct a network which is coherent with expression patterns and long range interactions?


behavior



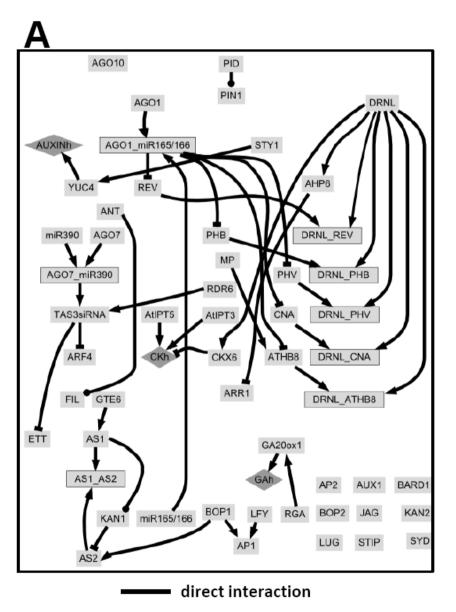
Superimposition

Superimposition


35 genes projected

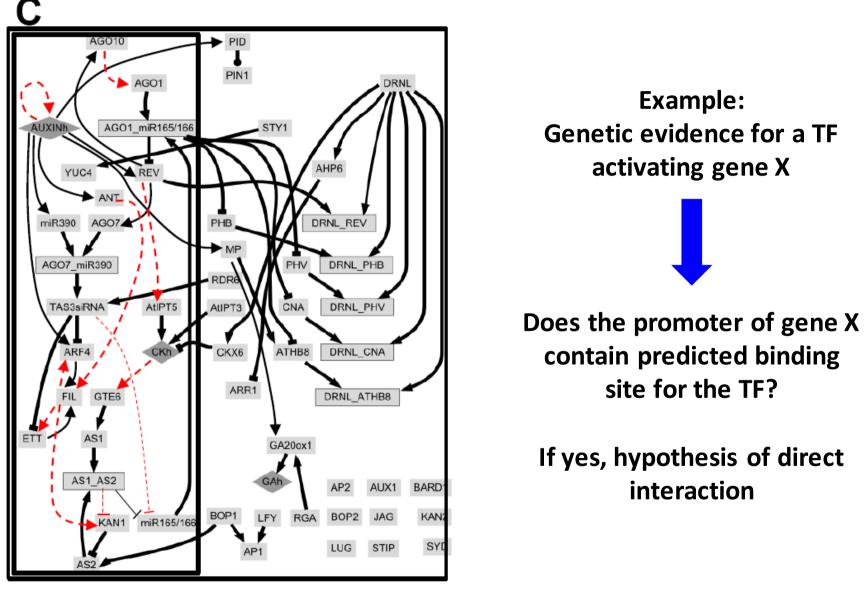
6 molecular states with 35 elements

	Zone 1	Zone 2	Zone 3	Zone 4	Zone 5	Zone 6	
AGO1	1	1	1	1	1	1	
AGO7	1	1	1	0	0	0	
AGO10	1	1	1	0	0	0	
AHP6	1	1	1	1	1	1	
ANT	1	1	1	1	1	1	
AP1	1	1	1	1	1	1	
AP2	1	1	1	1	1	1	
ARF4	0	0	0	1	1	1	
AS1	1	1	1	1	0	0	
AS2	1	1	0	0	0	0	
AtHB8	0	0	0	1	0	0	
AUX1	1	0	0	0	1	0	
BARD1	1	1	1	1	1	1	
BOP2	1	1	0	0	0	0	
CNA	1	1	1	0	0	0	
DRNL	1	1	1	1	1	1	
ETT	0	0	0	1	1	1	
FIL	0	0	0	1	1	1	
JAG	0	0	1	1	0	1	
KAN1	0	0	0	0	1	1	
LFY	1	1	1	1	1	1	
LUG	1	1	1	1	1	1	
MiR165/166	0	0	0	1	1	1	
MiR390	1	1	1	1	1	1	
MP	1	1	1	0	0	0	
РНВ	1	1	1	0	0	0	
PHV	1	1	0	0	0	0	
PID	1	1	1	1	1	1	
PIN1	1	0	0	1	1	0	
REV	1	1	1	0	0	0	
STIP	0	0	0	1	1	1	
STY1	1	1	1	1	1	1	
SYD	1	1	1	1	1	1	
TAS3	1	1	1	0	0	0	
YUC4	1	1	1	1	1	1	

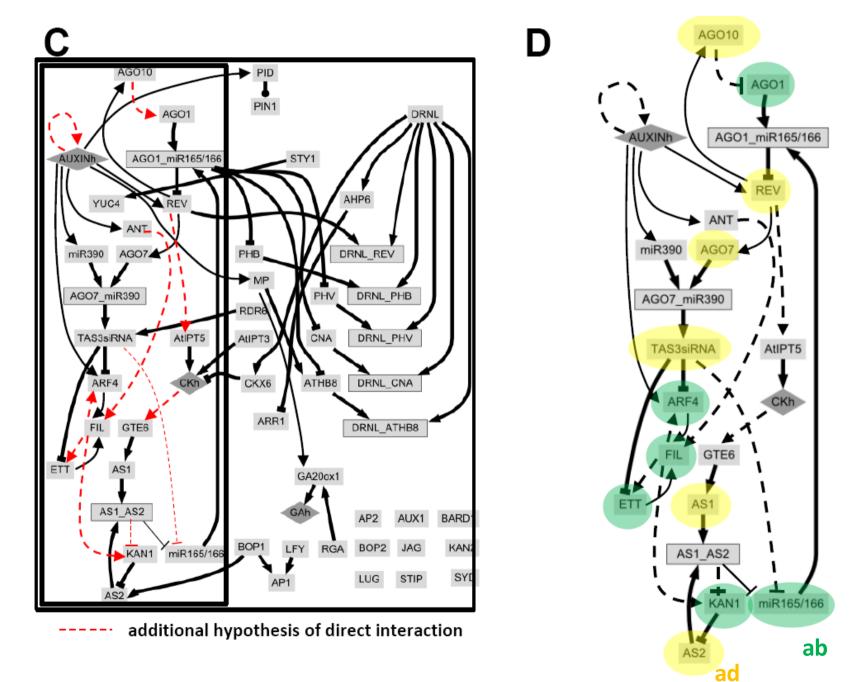

Objective: construct a network which is coherent with expression patterns and long range interactions

behavior

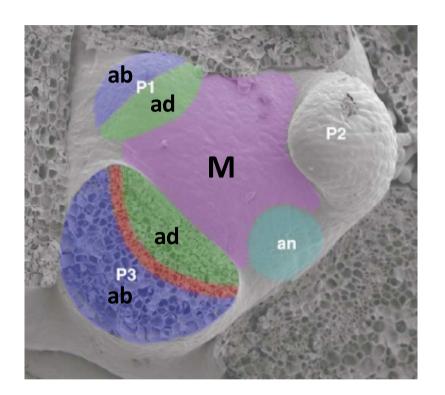
structure


Candidate molecular interaction graph (using direct interactions)

Theoretical requirements

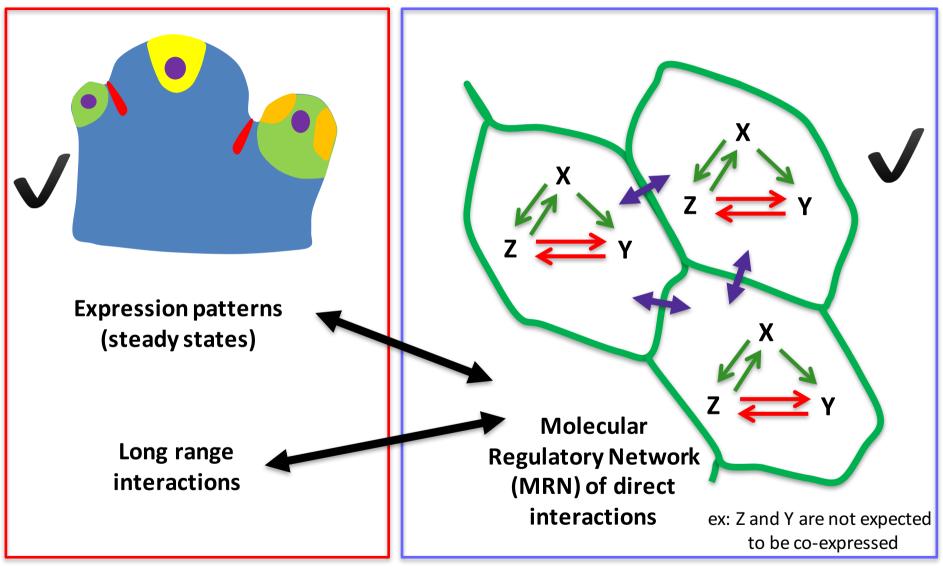

- close circuits
- inputs for each element

We can make hypotheses to fulfill requirements: how?



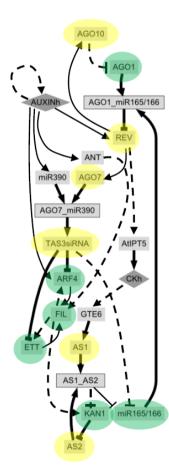
----- additional hypothesis of direct interaction

Candidate molecular interaction graph



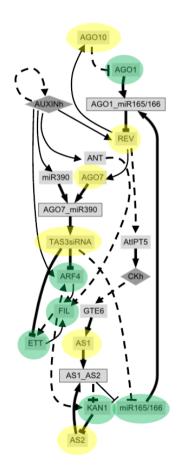
Positional information

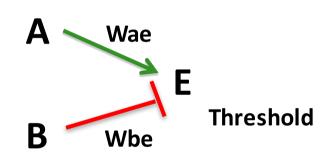
The <u>ad</u>axial side is closer to the meristem (<u>adjacent</u>) compared to the abaxial side


Objective: construct a network which is coherent with expression patterns and long range interactions

behavior

structure

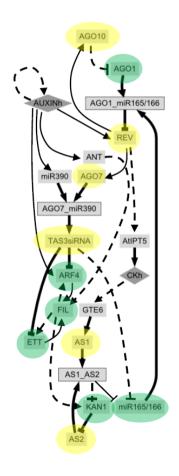

Expected behavior of our network

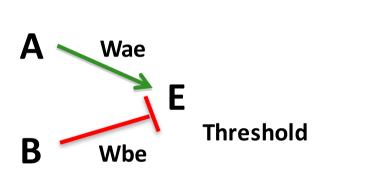


	Ļ		Ļ	
	Zone 1	Zone 2	Zone 3	
	Adaxial	Vascular	Abaxial	
AGO1	1	1	1	
AGO10	1	0	0	
AGO7	1	0	0	
ANT	1	1	1	
ARF4	0	1	1	
AS1	1	1	0	
AS2	1	0	0	
ETT	0	1	1	
FIL	0	1	1	
KAN1	0	0	1	
MiR165/166	0	1	1	
MiR390	1	1	1	
REV	1	0	0	
TAS3	1	0	0	

A mathematical model is required

The behavior of each element is determined by its inputs

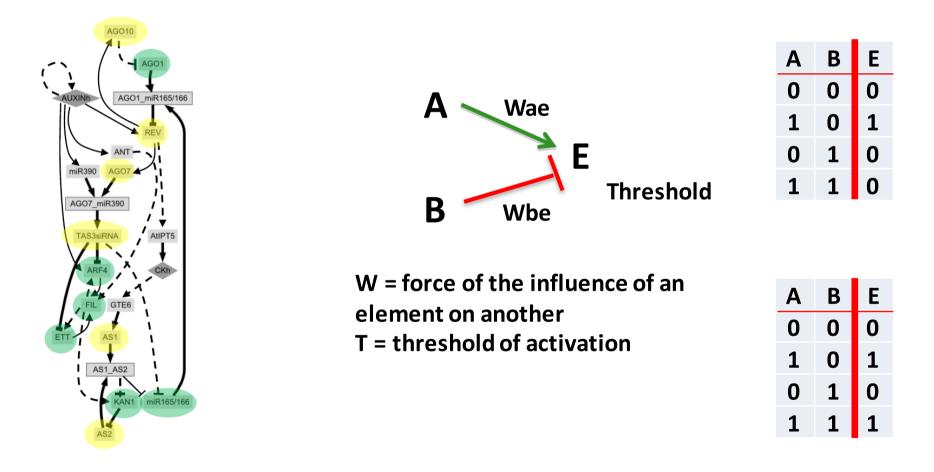




W = force of the influence of an element on another T = threshold of activation

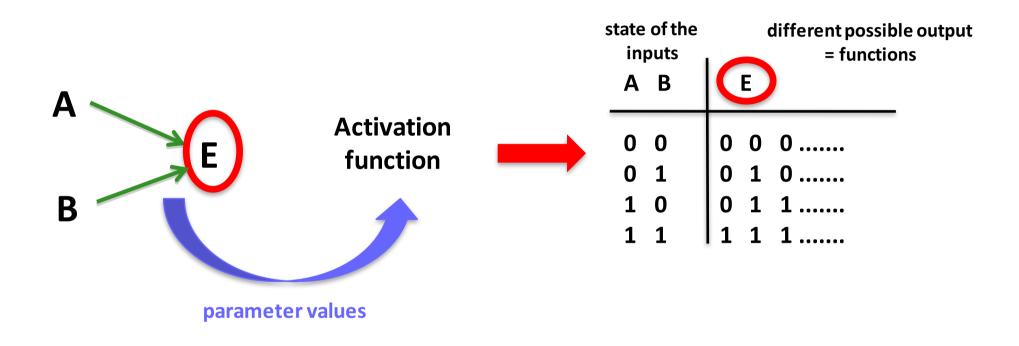
A mathematical model is required

The behavior of each element is determined by its inputs

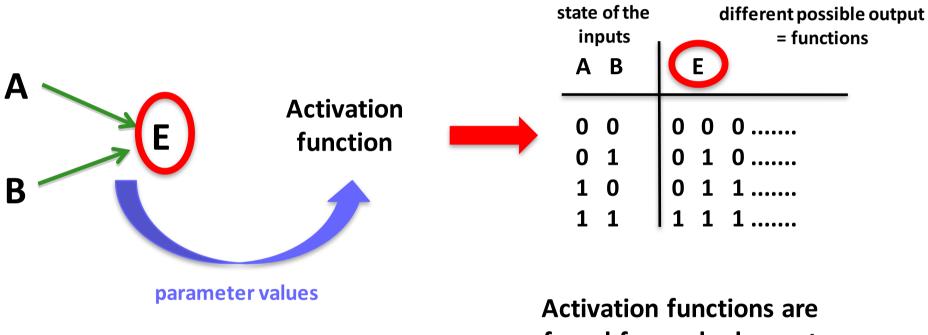

Α	В	Ε
0	0	0
1	0	1
0	1	0
1	1	0

W = force of the influence of an
element on another
T = threshold of activation

Α	В	Ε
0	0	0
1	0	1
0	1	0
1	1	1

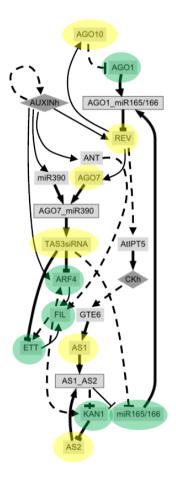

A mathematical model is required

The behavior of each element is determined by its inputs

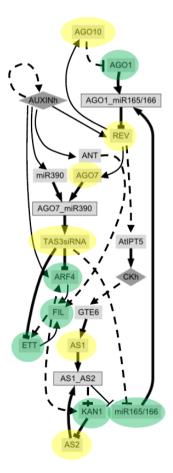


Different possible behavior depending on the parameter values

Behavior expressed as an activation function


Behavior expressed as an activation function

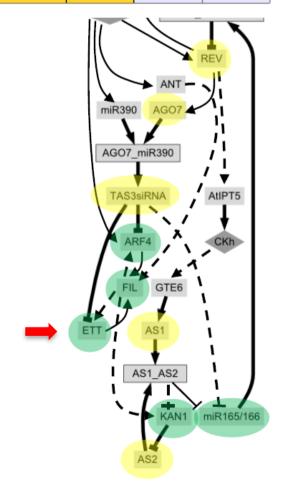
found for each element


A solution is represented by a set of activation functions

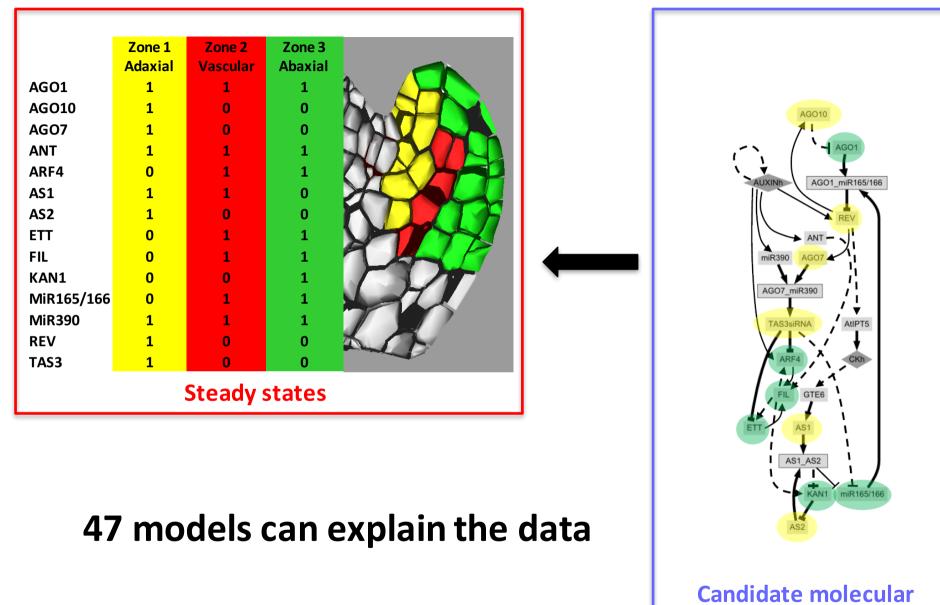
Parameter values inferred from expression data > solution(s)

	Zone 1 Adaxial	Zone 2 Vascular	Zone 3 Abaxial	
AGO1	1	1	1	
AGO10	1	0	0	
AGO7	1	0	0	
ANT	1	1	1	
ARF4	0	1	1	
AS1	1	1	0	
AS2	1	0	0	
ETT	0	1	1	
FIL	0	1	1	
KAN1	0	0	1	
MiR165/166	0	1	1	
MiR390	1	1	1	
REV	1	0	0	
TAS3	1	0	0	

47 solutions were found

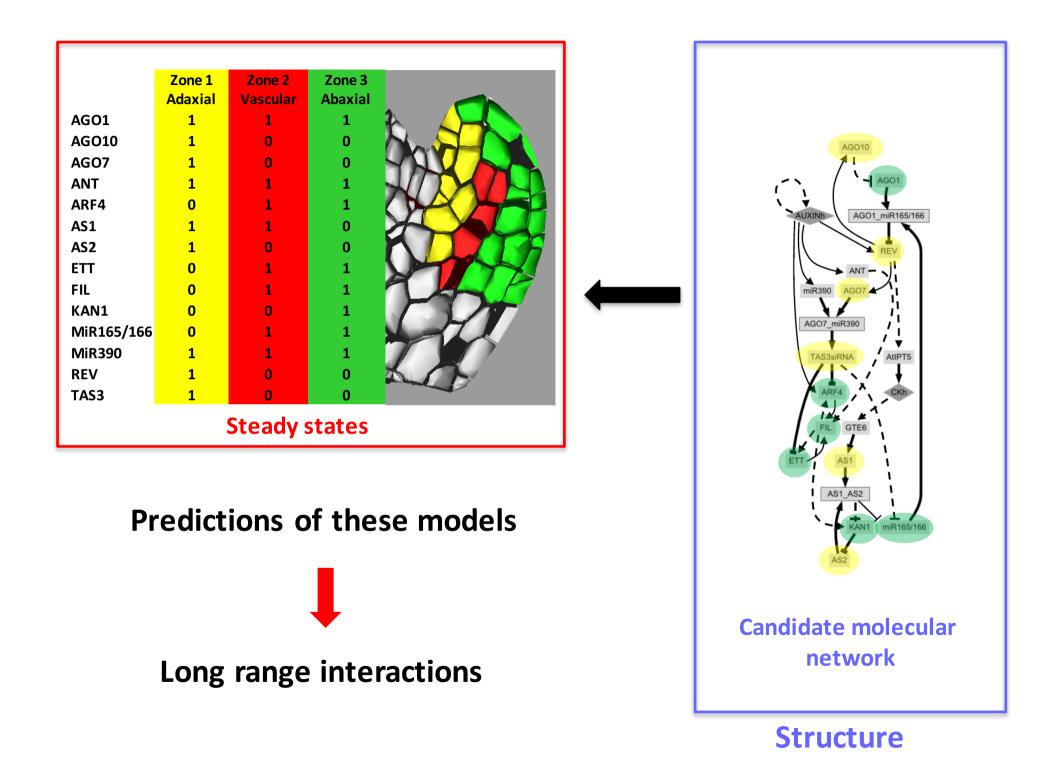


sucitinos 20 34 35 41 42	0 N N N N N N N N N N N N N N N N N N N	100V111111	∞ ∞ ∞ ∞ ∞ AGO1_miR165	N N N N N N GOT	ಜಜಜಜಜAG07_MiR390	TNA 5 5 5 5 NT	Z Z Z Z Z AtIPT5	1 1 5 5 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	2 2 2 2 AS1	« « « « « AS1_AS2	1 1 1 1 HS2	NIXIN 2 2 2 2 2 2	XD 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		1224 160 192 192 192	9119 2 2 2 2 2 2 2 2	INDX 4 4 4 4 12 5	1 1 1 1 1 miR165	2 × 7 × 7 × 10 × 100	A38444444	× × × × × × TAS3siRNA
44	2	1	8	2	8	2	2	14	2	8	1	2	2	2	192	2	4	1	2	4	2
45	2	1	8	2	8	2	2	14	2	8	1	2	2	3	192	2	4	1	2	4	2
52	2	1	8	2	8	2	2	15	2	8	1	2	2	3	128	2	4	1	2	4	2
54	2	1	8	2	8	2	2	10	2	8	1	2	2	2	192	2	4	1	2	4	2
55 57	2 2	1	8 8	2	8 8	2	2	10 15	2	8 8	1	2	2 2	3 3	192 224	2	4	1	2	4	2
61	2	1	8	2	8	2	2	15	2	8	1	2	2	3	168	2	4	1	2	4	2
62	2	1	8	2	8	2	2	15	2	8	1	2	2	3	192	2	4	1	2	5	2
66	Z	1	8	Z	8	z	z	15	2	8	1	Z	z	Z	160	z	4	1	2	4	z
68	Z	1	8	2	8	z	Z	15	2	8	1	Z	Z	Z	128	z	4	1	2	4	z
94	2	1	8	2	8	2	2	15	2	8	1	2	2	2	168	2	4	1	2	4	2
99 114	2 2	1	8	2	8 8	2	2	15 14	2	8 8	1	2	2	3	128 128	2	5	1	2	4	2
115	2	1	8	2	8	2	2	14	2	8	1	2	2	3	128	2	4	1	2	4	2
116	2	1	8	2	8	2	2	15	2	8	1	2	2	3	136	2	4	1	2	4	2
127	2	1	8	2	8	2	2	15	2	8	1	2	2	2	128	2	12	1	2	4	2
135	2	1	8	2	8	2	2	12	2	δ	1	2	2	3	128	2	4	1	2	4	2
140	2	1	8	2	8	2	2	15	2	8	1	2	2	3	128	2	12	1	2	4	2
161 165	2	1	8 8	2	8 8	2	2 2	12 8	2	8 8	1	2	2	2	128 128	2	4	1	2	4	2 2
167	2	1	8	2	8	2	2	10	2	8	1	2	2	3	128	2	4	1	2	4	2
171	2	1	8	2	8	2	2	15	2	8	1	2	2	2	136	2	4	1	2	4	2
176	2	1	8	2	8	2	2	12	2	8	1	2	2	2	192	2	4	1	2	4	2
177	2	1	8	2	8	2	2	12	2	8	1	2	2	3	192	2	4	1	2	4	2
187	2	1	8	2	8	2	2	15	2	8	1	2	2	3	128	2	4	1	2	5	2
189 192	2 2	1	8 8	2	8 8	2	2	15 8	2	8 8	1	2	2 2	2 3	128 128	2	5 4	1	2	4	2
204	2	1	8	2	8	2	2	15	2	8	1	2	2	3	128	2	13	1	2	4	2
212	z	1	8	z	8	z	z	15	2	8	1	2	ž	ž	128	ž	13	1	z	4	z
214	Z	1	8	2	8	z	z	14	2	8	1	2	2	2	128	z	4	1	2	5	z
215		1	8	2	8	2	2	14	2	8	1	2	2	3	128	2	4	1	2	5	2
222		1	8	2	8	2	2	10	2	8	1	2	2	2	128	2	4	1	2	4	2
247		1	8	2	8	2	2	15	2	8	1	2	2	2	128	2	4	1	2	5	2
276 277	2	1	8 8	2	8 8	2 2	2	12 12	2	8 8	1	2	2 2	2 3	128 128		5 5	1	2	4	2
278		1	8	2	8	2	2	14	2	8	1	2	2	3	128		5	1	2	4	2
290		1	8	2	8	2	2	14	2	8	1	2	2	3	128		12	1	2	4	2
315		1	8	2	8	2	2	14	2	8	1	2	2	2	240	2	4	1	2	4	2
316		1	8	2	8	2	2	14	2	δ	1	2	2	2	160	2	4	1	2	4	2
317	Z	1	8	2	8	Z	Z	14	2	8		2	2	3	160	Z	4	1	2	4	Z
320		1	8	2	8	2	2	14	2	8	1	2	2	2		2	5	1	2	4	2

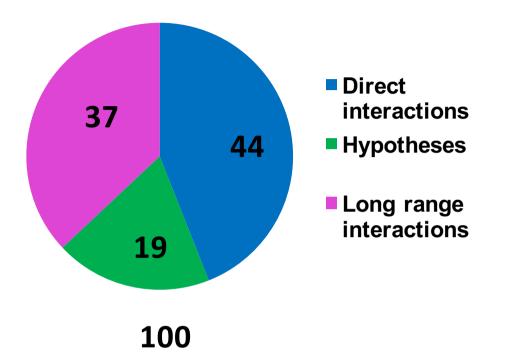

47 solutions were found

ETT

Inpu	its	Functions					
FIL	TAS3	f ₂	f ₃				
0	0	0	1				
1	0	1	1				
0	1	0	0				
1	1	0	0				

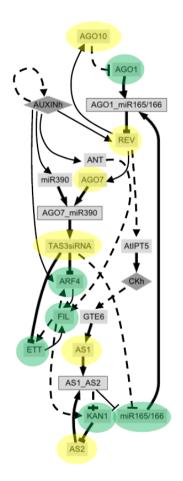


	suo fin JOS 20 34 35 39 41 42 44 45 55 761 62 65 68	× × × × × × × × × × × × × × × × × × 46010	109711111111111111111111	a a a a a a a a a a a a a a a a a d001_miR165	Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	TN 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	2 2 2 2 2 2 2 2 2 2 2 2 2 2 3 4 1 b 1 5	74H7155555544415101555555555555555555555555	132 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 921 AS2	288111111111111111111111	NIXIN 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	MD 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	LI 2 3 3 2 3 3 2 3 3 2 3 3 3 3 2 2	TE 224 160 192 192 192 192 192 192 192 192 192 192	9119 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	INVX 4 4 4 12 5 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	<u>7324444444444444444544</u>	Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z	
	94	2	1	8	2	8	2	2	15	2	8	1	2	2	2	168	2	4	1	2	4	2	
	99 114	2 2	1	8	2	8 8	2	2	15 14	2	8	1	2	2	3	128 128	2	5	1	2	4	2	
	115	2	1	8	2	8	2	2	14	2	8	1	2	2	3	128	2	4	1	2	4	2	1
	116	2	1	8	2	8	2	2	15	2	8	1	2	2	3	136	2	4	1	2	4	2	
	127	2	1	8	2	8	2	2	15	2	8	1	2	2	2	128	2	12	1	2	4	2	
	135	2	1	8	2	8	2	2	12	2	8	1	2	2	3	128	2	4	1	2	4	2	
	140	2	1	8	2	8	2	2	15	2	8	1	2	2	3	128	2	12	1	2	4	2	
1	161 165	2 2	1	8 8	2	8 8	2	2 2	12 8	2	8 8	1	2	2	2 2	128 128	2 2	4	1	2	4	2 2	
	167	2	1	8	2	8	2	2	10	2	8	1	2	2	3	128	2	4	1	2	4	2	1
	171	2	1	8	2	8	2	2	15	2	8	1	2	2	2	136	2	4	1	2	4	2	
	176	2	1	8	2	8	2	2	12	2	8	1	2	2	2	192	2	4	1	2	4	2	
	177	2	1	8	2	8	2	2	12	2	8	1	2	2	3	192	2	4	1	2	4	2	
	187	2	1	8	2	8	2	2	15	2	8	1	2	2	3	128	2	4	1	2	5	2	
	189	2	1	8	2	8	2	2	15	2	8	1	2	2	2	128	2	5	1	2	4	2	
	192 204	2 2	1	8	2	8	2	2 2	8 15	2	8	1	2	2 2	3	128 128	2 2	4 13	1	2	4	2	
	204 212	Z	1 1	8 8	2 2	8 8	ž	ž	15 15	2	8 8	1	2	2	3 2	120	2	13	1 1	2	4	2 2	
	212	ź	1	8	ź	8	ź	ź	14	ź	8	i	ź	ź	ź	128	ź	4	i	ź	5	ź	
	215		1	8	2	8	2	2	14	2	8	1	2	2	3	128	2	4	1	2	5	2	
	222	2	1	8	2	8	2	2	10	2	8	1	2	2	2	128	2	4	1	2	4	2	
	247		1	8	2	8	2	2	15	2	8	1	2	2	2	128	2	4	1	2	5	2	
	276		1	8	2	8	2	2	12	2	8	1	2	2	2	128	2	5	1	2	4	2	
	277		1	8	2	8	2	2	12	2	8	1	2	2	3	128	2	5	1	2	4	2	
	278 290		1	8 8	2	8 8	2	2 2	14 14	2	8 8	1	2 2	2 2	3 3	128 128	2	5 12	1	2	4 4	2	
	315		1	8	2	8	2	2	14	2	8	1	2	2	2	240	2	4	1	2	4	2	
	316		1	8	2	8	2	2	14	2	8	1	2	2	2	160	2	4	1	2	4	2	
	317		1	8	2	8	z	z	14	2	8	1	2	2	3	160	z	4	1	2	4	z	
	320		1	8	2	8	2	2	14	2	8	1	2	2	2	128	2	5	1	2	4	2	



network

Structure



Model validation

37 genetic (indirect) interactions can be used to test the dynamics of the networks

Gain and loss-of-function mutations tested = 37 genetic interactions

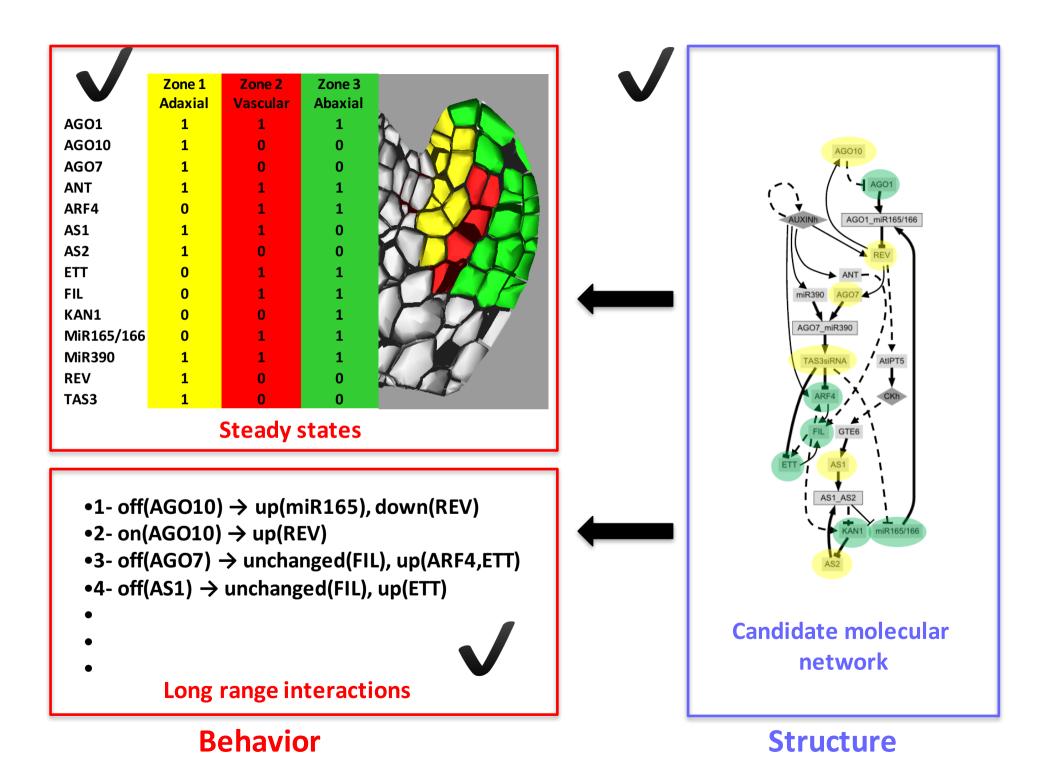
Candidate molecular network

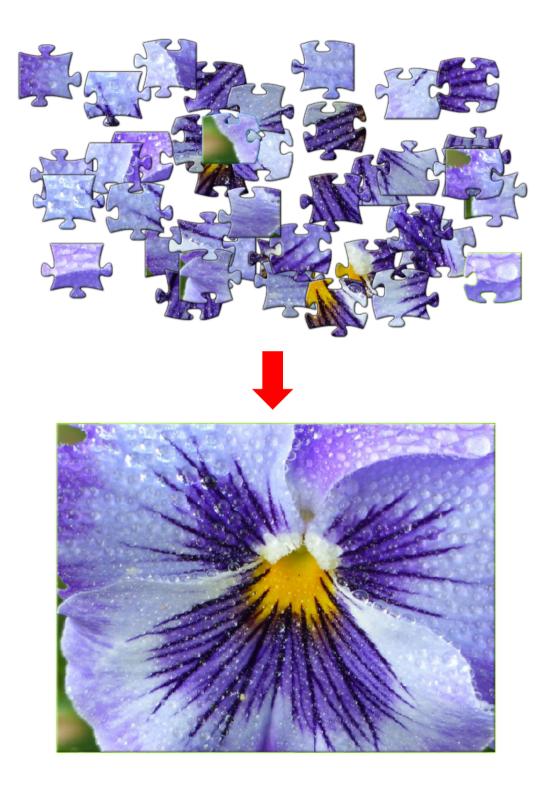
•1- off(AGO10) \rightarrow up(miR165), down(REV) •2- on(AGO10) \rightarrow up(REV) •3- off(AGO7) \rightarrow unchanged(FIL), up(ARF4,ETT) •4- off(AS1) \rightarrow unchanged(FIL), up(ETT) •5- off(AS2) \rightarrow up(ETT,FIL) •6- on(AS2) \rightarrow down(FIL) •7- off(AS2,AGO10) \rightarrow up(miR165), down(REV) •8- off(AS1,AGO7) \rightarrow up(FIL) •9- off(AS2,AGO7) \rightarrow up(miR165,FIL), down(REV) •10- off(ANT,FIL) \rightarrow down(REV) •11- off(TAS3siRNA) \rightarrow up(ETT,ARF4) •12- off(AS1,TAS3siRNA) \rightarrow down(REV), up(miR165) •13- off(AS2,TAS3siRNA) \rightarrow down(REV), up(miR165,FIL) •14- on(AUXIN) \rightarrow down(CK), up(AtIPT5) •15- off(KAN1) \rightarrow up(REV) •16- on(KAN1) \rightarrow down(REV) •17- on(miR165) \rightarrow down(AGO10), up(ETT,ARF4) •18- on(REV) \rightarrow down (FIL, KAN1), up(AS2) •19- on(CK) \rightarrow up(AS1) •20- on(FIL) \rightarrow down(AS2)

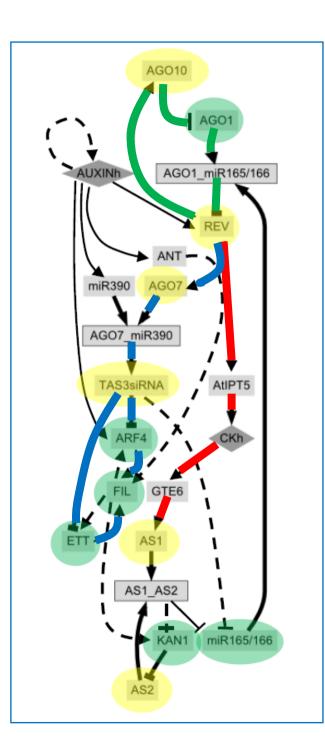
Model validation

For each of the 47 solutions, we run simulations of gain and loss of function

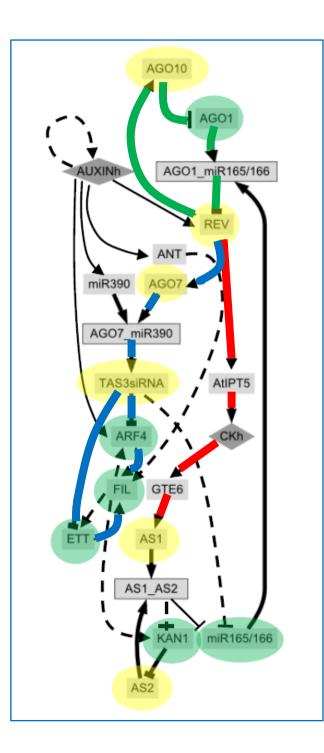
Model predictions

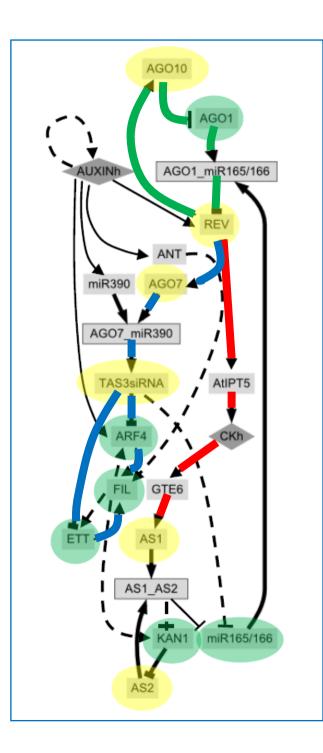



Experimental observations


Model validation

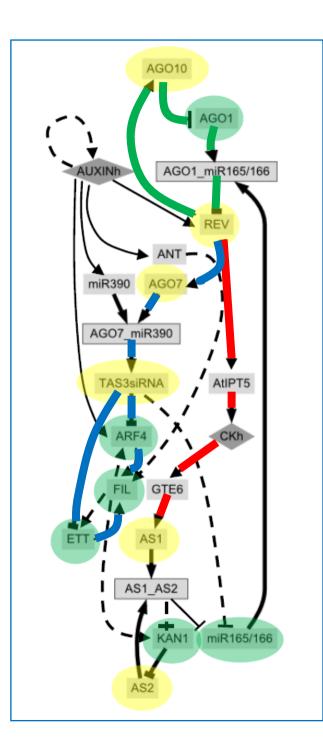
35 (out of 37) indirect interactions predicted by the model were supported by experimental observations


The 47 solutions were all equally good



- Several unexpected potential pathways revealed (REV>AS1, REV>TAS3, REV>AGO1 and miR)

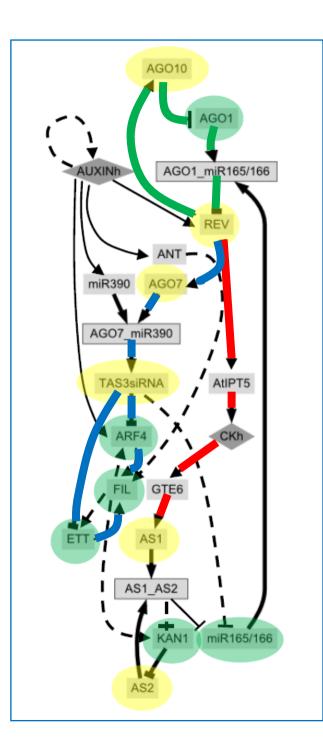
- Several unexpected potential pathways revealed (REV>AS1, REV>TAS3, REV>AGO1 and miR)


several predictions for activation functions of the elements
(e.g. FIL requires all inputs active)

- Several unexpected potential pathways revealed (REV>AS1, REV>TAS3, REV>AGO1 and miR)

several predictions for activation functions of the elements
(e.g. FIL requires all inputs active)

- all assumptions and hypotheses are predictions that can be tested experimentally

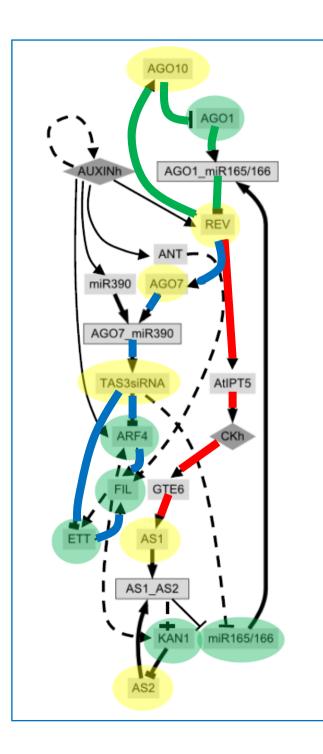


- Several unexpected potential pathways revealed (REV>AS1, REV>TAS3, REV>AGO1 and miR)

several predictions for activation functions of the elements
(e.g. FIL requires all inputs active)

- all assumptions and hypotheses are predictions that can be tested experimentally

- The available data are mostly coherent > this network probably account for adaxial and abaxial identities


- Several unexpected potential pathways revealed (REV>AS1, REV>TAS3, REV>AGO1 and miR)

several predictions for activation functions of the elements
(e.g. FIL requires all inputs active)

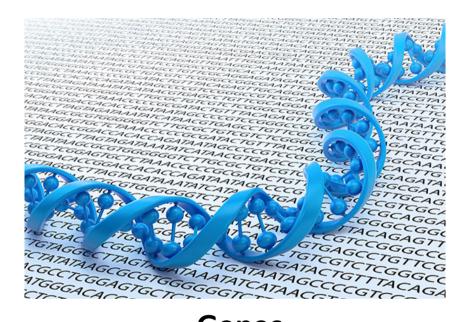
- all assumptions and hypotheses are predictions that can be tested experimentally

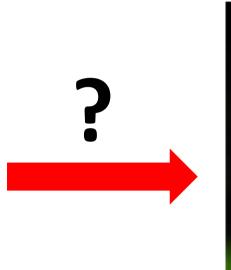
- The available data are mostly coherent > this network probably account for adaxial and abaxial identities

- Only based on published data !

- Several unexpected potential pathways revealed (REV>AS1, REV>TAS3, REV>AGO1 and miR)

several predictions for activation functions of the elements
(e.g. FIL requires all inputs active)

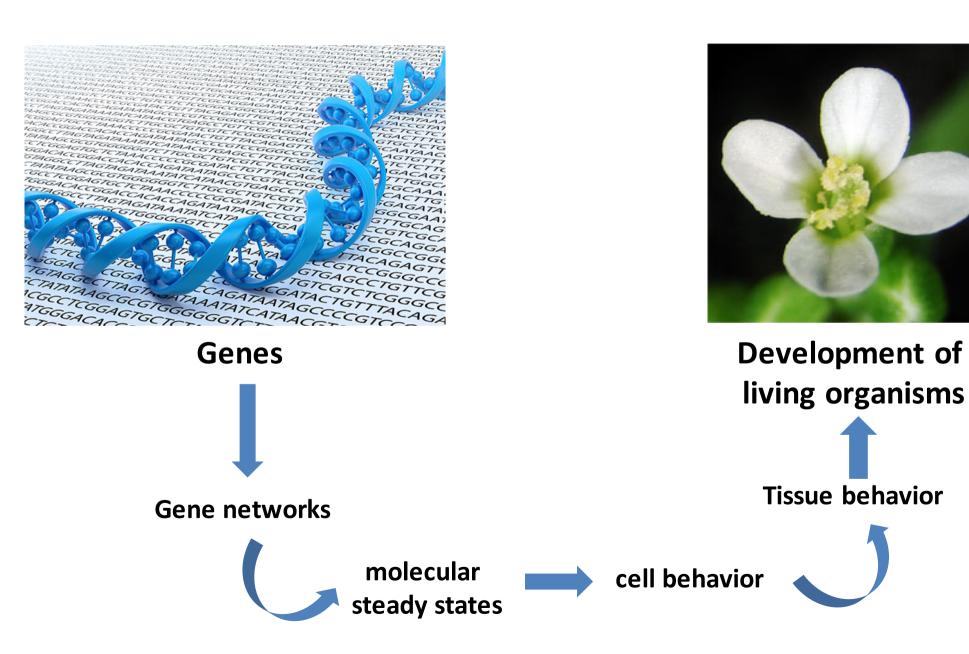

- all assumptions and hypotheses are predictions that can be tested experimentally


- The available data are mostly coherent > this network probably account for adaxial and abaxial identities

- Only based on published data !

- Can be implemented as new interactions are described

Take home message



Genes

Development of living organisms

Take home message

THE END

ARF4

	Input	S			Funct	ions						
AUX	FIL	TAS3	f ₈	f ₁₀	f ₁₂	f ₁₄	f ₁₅					
0	0	0	0	0	0	0	1	ETT				
1	0	0	0	1	0	1	1	Inpu	ıts	Functions		
0	1	0	0	0	1	1	1				f	
1	1	0	1	1	1	1	1	FIL	TAS3	2	3	
0	0	1	0	0	0	0	0	0	0	0	1	
1	0	1	0	0	0	0	0	1	0	1	1	
0	1	1	0	0	0	0	0	0	1	0	0	
1	1	1	0	0	0	0	0	1	1	0	0	

FIL

	Inputs	\$	Functions										
ANT	ANT ARF4 ETT		f ₁₂₈ f ₁₃₆		f ₁₆₀	f ₁₆₈	f ₁₉₂	f _224	f _240				
0	0	0	0	0	0	0	0	0	0				
1	0	0	0	0	0	0	0	0	0				
0	1	0	0	0	0	0	0	0	0				
1	1	0	0	1	0	1	0	0	0				
0	0	1	0	0	0	0	0	0	1				
1	0	1	0	0	1	1	0	1	1				
0	1	1	0	0	0	0	1	1	1				
1	1	1	1	1	1	1	1	1	1				

KAN1											
Inputs		Functions									
AS1_AS2	FIL	f ₄	f ₅	f ₁₂	f ₁₃						
0	0	0	1	0	1						
1	0	0	0	0	0						
0	1	1	1	1	1						
1	1	0	0	1	1						

MiR165/166

AS1

REV

	17 Sector Distances											
Inp	uts	Functions	Inputs		Functions							
1_AS2	TAS3	f ₁	AGO1_miR165/166	AUXh	f ₄	f ₅						
0	0	1	0	0	0	1						
1	0	0	1	0	0	0						
0	1	0	0	1	1	1						
1	1	0	1	1	0	0						