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Aims of the lecture

Quantitative analysis of gene expression
Overview of the different steps of the analysis
It is not exhaustive
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Design of a transcriptomic project

Biological question
↓ ↑

Experimental design

choice of the technology and type of analysis
↓

Data acquisition
↓

Data analysis

normalization, differential analysis, clustering, ...
↓ ↑

Validation
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HTS data characteristics

Some statistical challenges of HTS data
Discrete, non-negative, and skewed data with very large dynamic
range (up to 5+ orders of magnitude)
Sequencing depth (= “library size”) varies among experiments
Total number of reads for a gene ∝ expression level × length

Gene 1 Gene 2

Gene 1 Gene 2

Sample 1

Sample 2

To date, most methodological developments are for experimental
design, normalization, and differential analysis...
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Normalization

Definition
Normalization is a process designed to identify and correct
technical biases.
Two types of bias
controlable biases: the construction of cDNA libraries
uncontrolable biases: sequencing process
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Two types of normalization

Within-sample normalization
Enabling comparisons of genes from a same sample
Not required for a differential analysis
Not really relevant for the data interpretation
Sources of variability: gene length and sequence composition
(GC content)

Between-sample normalization
Enabling comparisons of genes from different samples
Sources of variability: library size, presence of majority fragments,
sequence composition due to PCR-amplification step in library
preparation‘(Pickrell et al. 2010, Risso et al. 2011)
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Between-sample normalization: the scaling factor

Definition
For sample j , let Ygj be the raw count for gene g.
The normalized count is defined by:

Ygj

sj
,

where sj is the scaling factor for the sample j .

Three types of methods:
Distribution adjustment
Method taking length into account
The Effective Library Size concept
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Distribution adjustment

Let n be the number of samples in the project

Total read count normalization (Marioni et al. 2008)

sj =
Nj

1
n
∑n

`=1 N`

, where Nj =
∑

g

Ygj

Upper Quartile normalization (Bullard et al. 2010)

ŝj =
Q3j

1
n
∑

`=1 Q3`

, where Q3j = Y( 3
4 [G+1])j

Q3j is computed after exclusion of transcripts with no read count
Median

sj =
mediangYgj

1
n
∑n

`=1 mediangYg`
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Method taking length into account

RPKM: Reads Per Kilobase per Million mapped reads
Motivation greater lane sequencing depth and transcript length
=> greater counts whatever the expression level
Assumption read counts are proportional to expression level,
transcript length and sequencing depth (same RNAs in equal
proportion)
Method divide gene read count by total number of reads (in
million) and transcript length (in kilobase)

Ygj

NjLg
× 103 × 106 (1)

RPKM method is an adjustment for library size and transcript
length
Allows to compare expression levels between genes of the same
sample
Unbiased estimation of number of reads but affect the variability.
(Oshlack et al. 2009)
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Method based on the Effective Library Size

Relative Log Expression (RLE)
compute a pseudo-reference sample: geometric mean across
samples (less sensitive to extreme value than standard mean)

(
n∏

`=1

Yg`)
1/n

calculate normalization factor

s̃j = mediang
Ygj

(
∏n

`=1 Yg`)1/n

normalize them such that their product equals 1

sj =
s̃j

exp[ 1
n
∑

` log s̃`]
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Method based on the Effective Library Size

Trimmed Mean of M-values (TMM)
Assumption: the majority of the genes are not differentially expressed
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gj = log2(
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)
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gj = [log2(

Ygj

Nj
) + log2(
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Nr
)]/2
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TMM normalization

Algorithm
Select the reference r as the library whose upper quartile is
closest to the mean upper quartile.

Compute weights w r
gj = (

Nj−Ygj
Nj Ygj

+
Nr−Ygr
Nr Ygr

)

Compute TMM r
j =

∑
g∈G? w r

gj M
r
gj∑

g∈G? w r
gj

Define
s̃j = 2TMM r

j

Normalize them such that their product equals 1

sj =
s̃j

exp
1
n
∑
` s̃`

E. Delannoy & M.-L. Martin-Magniette Analysis of RNA-Seq data INRA 14 / 94



Which normalization method ?

At lot of different normalization methods...
Some are part of models for DE, others are ’stand-alone’
They do not rely on similar hypotheses
But all of them claim to remove technical bias associated with
RNA-seq data

Questions
Which one is the best ?
Which criteria are relevant for this choice ?

A comprehensive evaluation of normalization methods for Illumina
high-throughput RNA sequencing data analysis
French StatOmique Consortium (2012) doi : 10.1093./bib/bbs046
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Comparison of 7 normalization methods

Differential analyses on 4 real datasets (RNA-seq or miRNA-seq) and
one simulated dataset
at least 2 conditions, at least 2 bio. rep., no tech. rep.
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Comparison procedures

Distribution and properties of normalized datasets
Boxplots, variability between biological replicates

Comparison of DE genes

Differential analysis by exact test: DESeq v1.6.1, default parameters

Number of common DE genes, similarity between list of genes
(dendrogram - binary distance and Ward linkage)

Power and control of the Type-I error rate

simulated data

non equivalent library sizes

presence of majority genes
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Normalized data distribution
When large diff. in lib. size, TC and RPKM do not improve over the raw
counts.

Example: Mus musculus dataset
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Within-condition variability

Example: Mus musculus, condition D dataset
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Lists of differentially expressed (DE) genes

For each dataset
(gene x method) binary
matrice:

1: DE gene
0: non DE gene

Jaccard distance
between methods
dendrogramm, Ward
linkage algorithm

Consensus matrice
Mean of the distance
matrices obtained from each
dataset
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Type-I Error Rate and Power (Simulated data)
Inflated FP rate for all the methods except TMM and DESeq
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So the Winner is ... ?

In most cases
The methods yield similar results

However ...
Differences appear based on data characteristics
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Conclusions on normalization

RNA-seq data are affected by technical biaises (total number of
mapped reads per lane, gene length, composition bias)

Csq1: non-uniformity of the distribution of reads along the genome
Csq2: technical variability within and between-sample

Normalization by gene length isn’t required for the differential
analysis.

Normalisation is necessary and not trivial.
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Normalisation step is specific of the group of
samples considered
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Conclusions on normalization

Differences between normalisation methods when genes with
large number of reads and very different library depths

TMM and DESeq : performant and robust methods in a differential
analysi context

Risso et al (2014) proposed a new method (RUVSeq). It is a factor
analysis based on a suitably-chosen subset of negative control
genes
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TP session

Directory Script, look at NormalizationMethods.R
Read the code
Run the code and observe the normalized count distribution
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Table of contents
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Statistical hypothesis test
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Statistical hypothesis test
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Statistical hypothesis test
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Principle of a hypothesis test

Construction of a test
Formulate the two hypotheses
Construct the test statistic
Define its distribution under the null hypothesis
Calculate the p-value
Decide if the null hypothesis is rejected or not

Definition of a p-value
It is the probability of seeing a result as extreme or more extreme than
the observed data, when the null hypothesis is true

Decision rule
The null hypothesis is rejected if the p-value is lower than a given
threshold
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Decision table

H0 true H0 false
no difference difference

Do not reject H0 Right decision Wrong decision
type II error

Reject H0 Wrong decision Right decision
type I error

Acceptable errors
In a type I error, the null hypothesis is really true but the statistical
test has led you to believe that it is false. It is a false positive.
In a type II error, the null hypothesis is really false but the test has
not picked up this difference. It is a false negative.
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Multiple testing

The result of a test can be viewed as a random variable:
0 if the result is a true positive
1 if the result is a false positive

By definition, P(to be a false positive)=α

Question
Perform G=10000 tests at level α
What is the expected number of false-positive ?
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Contingency table for multiple hypotesis testing

True False
null hypotheses null hypotheses

Declared True Negatives False Negatives Negatives
non-significant

Declared False Positives True Positives Positives
significant
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P-value adjustment

Adjust the raw p-values to control
FWER = P(FP > 0) (Bonferroni procedure)
FDR = E(FP/P) if P > 0 or 1 otherwise (Benjamini-Hochberg
procedure)

Calculating adjusted p-values
Start with (unadjusted) p-values for G hypotheses

1 Order the p-values p(1) < . . . < p(G)

2 Multiply each p(i) by its adjustment factor
Bonferroni: ai = G
Benjamini-Hochberg : ai =

G
i

3 Let p̃(i) = aip(i)
4 Set p̃(i) = min(p̃(i) , 1) for all i
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Test for RNA-seq data
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Distribution for count data

From D. Robinson and D. McCarthy
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Notations and framework

Let Yg11, . . . ,Yg1n be independent counts from condition 1,

Yg1` ∼ NB(s`λg1, φg)

Let Yg21, . . . ,Yg2n be independent counts from condition 2,

Yg2r ∼ NB(srλg2, φg)

s` the library size of sample `
λgj the proportion of the library for this particular gene g in
condition j .
We want to test

H0 = {λg1 = λg2} vs H1 = {λg1 6= λg2}

Need to estimate λg1, λg2 and φg
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Dispersion estimation

Few replicates to accurately estimate the dispersion parameter
DESeq: φg is a smooth function of λg = λg1 = λg2

edgeR: empirical Bayesian procedure to estimate φg

... and many, many more methods!

Soneson & Delorenzi (2013, BMC Bioinf) compared 11 methods using simulations:
No single method is optimal under all circumstances ...

Nookaew et al. (2012, NAR) compared microarray & RNA-seq differential analyses:
Importance of mapping to estimate gene expression level
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Exact Negative Binomial Test
Robinson & Smyth (2008) Biostatistics

If librairie sizes are equal (Anderson & Boullion, 1972)
s` = s for ` = 1, . . . ,n
Yg11 . . .+ Yg1n ∼ NB(nsλg1, φg/n)

Yg21 . . .+ Yg2n ∼ NB(nsλg2, φg/n)

There exists a sufficient statistic for λg1, λg2

φg can be estimated independently from λg1, λg2

The normalisation is performed to get librairies with equal size
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GLM framework for RNAseq data

Let Ygjv be the counts of reads for gene g in the sample described
by the uplet (j , v)

Generalized Linear Model allows to decompose a function of the
mean of the observations

We assume
Ygjv ∼ NB(µgjv , φg)

with
E(log(Ygjv )) = log(sjv ) + log(λgjv )

where
sjv is the library size for sample described by (j , v)

log(λgjv ) = f (g, j , v) for example

log2(λgjv ) = Intercept + αgj + βgv + γgjv
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Inference and test

Parameters are those describing the mean and the dispersion φg .

They are estimated by the quasi-likelihood estimators: φg are
estimated and parameters describing the mean are then
estimated by maximizing a function of the data and the dispersion

Test based on the likelihood ratio test or the Wald test
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Linear model framework for RNAseq data

Let Ygjv be the counts of reads for gene g in the sample described
by the uplet (j , v)

Data are transformed so that a linear model can be considered
Linear Model allows to decompose a function of the mean of the
observations

We assume
Ỹgjv ∼ N (µgjv , σ

2
g)

with
E(Ỹgjv ) = Intercept + sjv + αgj + βgv + γgjv
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Example

Consider a project where a wild-type plant and three mutants are
studied
Available data are three biological replicates of the gene
expression for each type of plant
The aim is to find genes affected by each mutation
How can you answer this question ?
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Conclusions on the differential analysis

The discrete nature as well as the extreme precision of RNA-seq
measures are a challenge for statistical analyses

Differential analysis is based on several assumptions: read
distribution and dispersion modeling

Some methods proposed to filter low counts

Exact test is not tailored for experiments with more than one factor

GLM is a more flexible framework

Another alternative is to transform the data and to use a linear
model (limma-voom)

In the latter two cases, it is important to determine which factors
are important to include in the expectation decomposition ?
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In practice

To perform a differential analysis, we have to make a decision about
the filtering (yes or no)

the modeling (NB, GLM or LM and which factors are important to
consider ?)

the dispersion estimation (several methods)
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How to evaluate methods for the differential
analysis of gene expression?

Real data:
More realistic
... but no extensively validated data yet available

Simulated data:
Truth is well-controlled
... but what model should be used to simulate data? How realistic
are the simulated data? How much do results depend on the model
used?

Another solution: synthetic data
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Synthetic data simulations

H0 genes 

Validated 

Unknown 
status 

H0 full  
dataset  

H1 rich 
dataset  

Leaves vs Leaves Buds vs Leaves 

qRT-PCR 

Creation of 10 synthetic datasets for each proportion of full H0 dataset
considered
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Synthetic data simulations

H0 genes 

Validated 

Unknown 
status 

H0 full  
dataset  

H1 rich 
dataset  

random  
sub-selection 

random  
sub-selection 

Synthetic 
dataset  

Leaves vs Leaves Buds vs Leaves 

qRT-PCR 

Creation of 10 synthetic datasets for each proportion of full H0 dataset
considered
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Fifteen evaluated methods

Information on the experimental design
Two conditions: buds and leaves
Two biological replicates are available for each tissu
It means that gene expression is measurement for each tissu from
plants grown in the same growth chamber but at two different
dates

Question about the differential analysis
the filtering (yes or no)
Count modeling

NB model
GLM with or without batch effect
Data transformation and linear model with or without batch effect

dispersion estimation: edgeR, DESeq, DESeq2
limma for linear model
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Definition of a ROC curve
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The sets of truly DE genes and truly NDE genes

the set of truly DE genes
251 DE genes identified by qRT-PCR among 332 randomly chosen
genes

the set of truly NDE genes
The proper identification is not straightforward
NDE.union: genes declared at least once not differentially
expressed by DESeq2, glm edgeR and limma-voom taking into
account a batch effect.
NDE.union may include some genes that are not truly NDE
NDE.inter: genes always declared not differentially expressed by
the three methods.
NDE.inter may exclude some truly NDE genes.
Consequently both should be considered for AUC and FDR
evaluations.
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Discrimination of DE and NDE genes

Data filtering has a slight effect
For a proportion of full H0
dataset above 0.6 (implying a
smaller proportion of DE genes),
linear modeling after data
transformation or glm modeling
improves the AUC
This increase is even greater
when a batch effect is
considered
The variance-mean relationship
modeling seems to have a
limited impact

Similar results with NDE.union and NDE.inter
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Evaluation of the TPR

Tests were performed at FDR level 5%

Two groups : methods taking
into account a batch effect and
all the other methods.

For the first group, methods
show a high TPR
For the second group, the TPR
is a function of the full H0
dataset proportion.
The variance-mean relationship
modeling and the data filtering
seem to have only a limited
impact.

E. Delannoy & M.-L. Martin-Magniette Analysis of RNA-Seq data INRA 53 / 94



Evaluation of the TPR

Tests were performed at FDR level 5%

Two groups : methods taking
into account a batch effect and
all the other methods.
For the first group, methods
show a high TPR
For the second group, the TPR
is a function of the full H0
dataset proportion.

The variance-mean relationship
modeling and the data filtering
seem to have only a limited
impact.

E. Delannoy & M.-L. Martin-Magniette Analysis of RNA-Seq data INRA 53 / 94



Evaluation of the TPR

Tests were performed at FDR level 5%

Two groups : methods taking
into account a batch effect and
all the other methods.
For the first group, methods
show a high TPR
For the second group, the TPR
is a function of the full H0
dataset proportion.
The variance-mean relationship
modeling and the data filtering
seem to have only a limited
impact.

E. Delannoy & M.-L. Martin-Magniette Analysis of RNA-Seq data INRA 53 / 94



Evaluation of the FDR

Requires to identify the set of genes non-differentially expressed
(NDE)
Not easy
Two sets are defined :

(i) intersection of the genes declared NDE by edgeR,
DESeq2 and limma-voom that take a batch effect into
account (lower bound)

(ii) union of the genes declared NDE by edgeR, DESeq2
and limma-voom that take a batch effect into account
(upper bound)
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Evaluation of the lower bound

Tests were performed at FDR level 5%

For the methods not taking a
bach effect into account, the
lower bound is close to 0
For the methods taking a
bach effect into account, the
lower bound is higher and
increases with the proportion
of full H0 dataset
The filtering procedure
seems to stabilize the lower
bound across the proportion
of full H0 dataset.
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Evaluation of the upper bound

A strong effect of the data
filtering
The upper bound of all
filtered methods was lower
than 0.05 except for glm
edgeR with a batch effect at
90% of full H0 dataset
For the methods not taking a
batch effect into account, the
upper bound was very close
to 0, suggesting that they
were very conservative
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Evaluation of the p-values

Recall
When no difference is expected, histogram of the p-values are
expected to be uniform histogram
For each synthetic dataset, 100 Kolmogorov-Smirnov tests on
1000 genes randomly chosen in the full H0 dataset are performed

73% of tests are rejected after a
Bonferroni adjustement
KS statistic values are smaller
for models taking a batch effect
into account than for model
without batch effect
Data filtering has a slight effect
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Conclusions

Synthetic data are a relevant framework
Our analysis suggests that a well-modeling of the expectation of
the counts is crucial
To date, biological replicates of plants are not considered as a
factor
Impossible to observe this fact on simulated data

the raw p-value distribution = an indicator of quality
It should be used to evaluate the fit between the counts and the
model
an histogram with a peak at the right side often indicates that the
modeling is incorrect

modeling ≥ filtering ≥ dispersion
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Gene co-expression for gene function prediction

Transcriptome data: main source of ’omic information available for
living organisms

Microarrays (∼1995 - )
High-throughput sequencing: RNA-seq (∼2008 - )

Comparison of two conditions (hypothesis tests)→ Differential
expression analysis

Co-expression (clustering) analysis
Study gene expression behavior across several conditions
Co-expressed genes may be involved in similar biological
process(es) (Eisen et al., 1998))
⇒ Co-expression is a tool to study genes without known or
predicted function (orphan genes)
⇒ It is also the first step to build a regulatory network
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Model-based clustering

Probabilistic clustering models : data assumed to come from
distinct subpopulations, each modeled separately

Rigourous framework for parameter estimation and model
selection

Output: each gene assigned a probability of cluster membership

What are the key ingredients to define a mixture model ?
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Key ingredients of a mixture model

what we observe the model the expected results

Z = ? Z : 1 = •, 2 = •, 3 = •

Let y = (y1, . . . ,yn) denote n observations described by Q variables
Let Z = (Z1, . . . ,Zn) be the latent vector.

1) Distribution of Z: {Zi} are assumed to be independent and

P(Zi = k) = πk with
K∑

k=1

πk = 1 → Z ∼M(n;π1, . . . , πK )

K is the number of components of the mixture

2) Distribution of (Yi |Zi = k) is a parametric distribution f (•;γk )
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Questions around the mixtures

Modeling: what distribution for each component ?
 it depends on observed data.

Inference: how to estimate the parameters ?
 it is usually done with an EM-like algorithm (Dempster et al., 77)

Model selection: how to choose the number of components ?

A collection of mixtures with a varying number of components is
usually considered
A criterion is used to select the best model of the collection
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Outputs of the model and data classification

Distribution: Conditional probabilities:

g(yi ) = π1f (yi ;γ1) + π2f (yi ;γ2) + π3f (yi ;γ3) τik = P(Zi = k |yi ) =
πk f (yi ;γk )

g(yi )

τik i = 1 i = 2 i = 3
k = 1 0.658 0.007 0.0
k = 2 0.342 0.478 0.0
k = 3 0.0 0.515 1.0

→ These probabilities enables the classification of the observations
into the subpopulations
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Outputs of the model and data classification

Distribution: Conditional probabilities:

g(yi ) = π1f (yi ;γ1) + π2f (yi ;γ2) + π3f (yi ;γ3) τik = P(Zi = k |yi ) =
πk f (yi ;γk )

g(yi )

τik i = 1 i = 2 i = 3
k = 1 0.658 0.007 0.0
k = 2 0.342 0.478 0.0
k = 3 0.0 0.515 1.0

Maximum A Posteriori rule: Classification in the component for which
the conditional probability is the highest.
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Finite mixture models

Assume data y come from K distinct subpopulations, each modeled
separately:

g(y) =
n∏

i=1

K∑
k=1

πk f (yi ; γk )

(π1, . . . , πK )′ are the mixing proportions, where
∑K

k=1 πk = 1
f (·; γk ) is the density of the k th component

For microarray data, we often assume yi |Zi = k ∼ N (µk ,Σk )

For RNA-seq data, we need to choose the family and
parameterization of f (·; γk )

Question
Let yij` be the observed count for gene i in condition j and replicate `.
Propose a distribution for f (·; γk )
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Poisson mixture model

Let yij` be the observed count for gene i in condition j and replicate `
Assume

yi |Zi = k ∼
J∏

j=1

Lj∏
`=1

P(yij`;µij`k )

for i = 1, . . . ,n independently, where variables are independent
conditionally on the components.

Question: How to parameterize the mean µij`k to obtain meaningful
clusters of co-expressed genes?
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Model parameterization: Which genes should be
clustered?
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Parameterization of the PMM

Consider the following parameterization:

µij`k = wiλjksj`

wi : overall expression level of observation i (yi··)
λk = (λjk ) : clustering parameters that define the profiles of genes
in cluster k (variation around wi )
sj` : normalized library size for replicate ` of condition j

Constraint:
∑

j
∑

` sj` = 1 for all k = 1, . . . ,K
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Interpretation

⇒ Genes are assigned to the same cluster if they share the same
profile of variation around their mean count across all conditions

Buds 
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Interpretation

⇒ Genes are assigned to the same cluster if they share the same
profile of variation around their mean count across all conditions

E. Delannoy & M.-L. Martin-Magniette Analysis of RNA-Seq data INRA 69 / 94



Inference: µij`k = wiλjksj`

Expression level

ŵi = yi··

Library size effect
The MLE estimator of sj` is the “total count” scaling factor:

ŝj` = y·jl/y···

Other estimators possible: Trimmed Mean of M-values, quantile,
DESeq, ...
After estimating sjl from the data, we consider this parameter to be
fixed.

Parameter estimation
πk ’s and λ’s are estimated with an EM algorithm
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Model selection

BIC aims at finding a good number of components to a global fit of
the data distribution

BIC(m) = log P(Y|m, θ̂)− νm

2
log(n).

where
νm is the number of free parameters of the model m
P(Y|m, θ̂) is the maximum likelihood under this model.

ICL is dedicated to a classification purpose. The penality has an
entropy term that penalizes stronger models for which the
classification is uncertain.

ICL(m) = BIC(m)−

{
−

n∑
i=1

K∑
k=1

τik log τik

}
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Behavior of BIC and ICL in practice for RNA-seq
data
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Slope heuristics (Birgé and Massart, 2006)

Non-asymptotic framework: construct a penalized criterion such
that the selected model has a risk close to the oracle model
Theoretically validated in Gaussian framework, but encouraging
applications in other contexts (Baudry et al., 2012)

SH(m) = log P(Y|m, θ̂) + κpenshape(m)

In large dimensions:
Stabilization of bias
Linear behavior of D

n 7→ −γn(ŝD)

⇒ Estimation of slope to calibrate κ̂ in a data-driven manner
(Data-Driven Slope Estimation = DDSE), capushe R package
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HTSCluster: Embryonic fly development

Using slope heuristics, selected model is K̂ = 48
(selected model via BIC and ICL is K̂ = 130)
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Real data analysis: Embryonic fly development

modENCODE project to provide functional annotation of
Drosophila (Graveley et al., 2011)
Expression dynamics over 27 distinct stages of development
during life cycle studied with RNA-seq
12 embryonic samples (collected at 2-hr intervals over 24 hrs) for
13,164 genes downloaded from ReCount database (Frazee et al.,
2011)
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HTSCluster: Embryonic fly development
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HTSCluster: Embryonic fly development
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HTSCluster: Embryonic fly development
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HTSCluster: Embryonic fly development

Embryos 22−24hr
Embryos 20−22hr
Embryos 18−20hr
Embryos 16−18hr
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Functional enrichment analysis: 33 of 48 clusters associated with
at least one Gene Ontology Biological Process term (e.g., cluster
6 associated with muscle attachment)
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Competing models

1 PoisL (Cai et al., 2004): K-means type algorithm using Poisson
loglinear model

Equivalent to HTSCluster when equal library sizes, unreplicated
data, equiprobable Poisson mixtures, and parameter estimation via
the Classification EM (CEM) algorithm

2 Witten (2011): hierarchical clustering of dissimilarity measure
based on a Poisson loglinear model

Originally intended to cluster samples
3 Si et al. (2014): model-based hierarchical algorithm using Poisson

and negative binomial models
4 Classic K-means algorithm on expression profiles (yij`/yi··)

Number of clusters not addressed by any of the above
Functional enrichments of Si et al. (2014) seem to be weaker than
ours
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Conclusions: Model-based clustering for HTS data

HTSCluster for clustering count-based RNA-seq profiles:

Poisson mixture model to directly model counts (i.e., no data
transformations, etc.) from HTS experiments
Interpretable parameter constraints lead to straightforward
parameter estimation (EM algorithm), model selection (slope
heuristics)
Similar or better performance than previously proposed
approaches on simulated data
Analyses of real datasets are promising
R package on CRAN available HTSCluster
Recently published in Bioinformatics
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A statistical model: what for?

Aim of an experiment: answer to a biological question.
Results of an experiment: (numerous, numerical) measurements.

Model: mathematical formula that relates the experimental
conditions and the observed measurements (response).

(Statistical) modelling: translating a biological question into a
mathematical model (6= PIPELINE!)

Statistical model: mathematical formula involving
the experimental conditions,
the biological response,
the parameters that describe the influence of the
conditions on the (mean, theoretical) response,
and a description of the (technical, biological)
variability.
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Experimental Design

Definition
A good design is dedicated to the asked question and facilitates data
analyses and interpretation of the results. It maximizes collected
information and proposes experiments with respect to the financial and
material constraints.

Ronald A. Fisher (1890-1962)

To call in the statistician after
the experiment is done may
be no more than asking him
to perform a post-mortem ex-
amination: he may be able to
say what the experiment died
of
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Basic principles - Fisher (1935)

(technical and biological) replications
Replication (independent obs.) 6= Repeated measurements
Randomization : randomize as much as is practical, to protect
against unanticipated biases
Blocking : dividing the observations into homogeneous groups.
Isolating variation attributable to a nuisance variable (e.g. lane)

Correspondence Nature Biotechnology (July 2011)
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Steps of experiment designing

1 Formulate a broadly stated research problem in terms of explicit,
addressable questions.

2 Considering the population under study, identifying appropriate
sampling or experimental units, defining relevant variables, and
determining how those variables will be measured.

3 Describe the data analysis strategy
4 Anticipate eventual complications during the collection step and

propose a way to handle them

source : Northern Prairie Wildlife Research Center, Statistics for Wildlifers:
How much and what kind?
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How to Design a good RNA-Seq experiment in an
interdisciplinary context?
Some basic rules

Rule 1 Share a minimal common language
Rule 2 Well define the biological question
Rule 3 Anticipate difficulties with a well designed experiment
Make good choices : Replicates vs Sequencing depth
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Rule 2: Well define the biological question

Choose scientific problems on feasibility and interest
Order your objectives (primary and secondary)
Ask yourself if RNA-seq is better than microarray regarding the
biological question

Recall that RNA-Seq technology is useful to
Study all the transcribed entities
Detect and estimate isoforms
Construct and study a de novo transcriptome
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Rule 3: Anticipate difficulties with a well designed
experiment

1 Prepare a checklist with all the needed elements to be collected,
2 Collect data and determine all factors of variation,
3 Choose bioinformatics and statistical models,
4 Draw conclusions on results.
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Be aware of different types of bias

Identify controllable biases / technical specificities

Keep in mind the influence of effects on results:
lane ≤ run ≤ RNA library preparation ≤ biological

(Marioni, 2008), (Bullard, 2010)

⇒ Increase biological replications !
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Biological and technical replicates

Biological replicate : sampling of individuals from a population in order
to make inferences about that population

Technical replicate adresses the measurement error of the assay.
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Why increasing the number of biological
replicates?

To generalize to the population level
To estimate to a higher degree of accuracy variation in individual
transcript (Hart, 2013)
To improve detection of DE transcripts and control of false positive
rate: TRUE with at least 3 (Sonenson 2013, Robles 2012)

McIntyre et al. (2011) BMC Genomics
Technical variability => inconsistent detection of exons at low levels of
coverage (<5reads per nucleotide)
Doing technical replication may be important in studies where low
abundant mRNAs are the focus.
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More biological replicates or increasing
sequencing depth?

It depends! (Haas, 2012), (Liu, 2014)
DE transcript detection: (+) biological replicates
Construction and annotation of transcriptome: (+) depth and (+)
sampling conditions
Transcriptomic variants search: (+) biological replicates and (+)
depth

A solution: multiplexing.

Tag or bar coded with specific sequences added during library
construction and that allow multiple samples to be included in the
same sequencing reaction (lane)

Decision tools available: Scotty (Busby et al. 2013),
Library RNAseqPower in Bioconductor (Hart et al., 2013)
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To summarize

The scientific question of interest drives the experimental choices
Collect informations before planning
All skills are needed to discussions right from project construction
Optimum compromise between replication number and
sequencing depth depends on the question
Biological replicates are important in most RNA-seq experiments
Wherever possible apply the three Fisher’s principles of
randomization, replication and local control (blocking)

And do not forget: budget also includes cost of biological data
acquisition, sequencing data backup, bioinformatics and statistical
analysis.
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