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Course outline

@ sShort introduction to bootstrap

e Application of bootstrap to classification: bagging
9 Application of bagging to CART: random forests
0 Introduction to parallel computing

e Standard approaches to scale up statistical methods to Big Data
@ Subsampling: Bag of Little Bootstrap (BLB)
@ Divide & Conquer
@ Online learning: online bagging
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Section 1

Short introduction to bootstrap
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Basics about bootstrap

General method for:
@ parameter estimation (especially bias)
@ confidence interval estimation

in a non-parametric context (i.e., when the law of the observation is
completely unknown).

Can handle small sample size (n small).
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Basics about bootstrap

General method for:
@ parameter estimation (especially bias)
@ confidence interval estimation
in a non-parametric context (i.e., when the law of the observation is

completely unknown).

Can handle small sample size (n small).

[Efron, 1979] proposes to simulate the unknown law using re-sampling
from the observations.
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Notations and problem

Framework: X random variable with (unknown) law P.

Problem: estimation of a parameter (P) with an estimate
Rn» = R(x1, ..., Xn) where xi, ..., X, are i.i.d. observations of P?

Standard examples:
@ estimation of the mean: 6(P) = [ xdP(x) with R, =X =1 37 | x;;

@ estimation of the variance: 6(P) = [ x?dP(x) - (f xcﬂP’(x))2 with

=INRA
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Notations and problem

Framework: X random variable with (unknown) law P.

Problem: estimation of a parameter (P) with an estimate
Rn» = R(x1, ..., Xn) where xi, ..., X, are i.i.d. observations of P?

Standard examples:
@ estimation of the mean: 6(P) = [ xdP(x) with R, =X =1 37 | x;;
@ estimation of the variance: 6(P) = [ x?dP(x) - (f xcﬂP(x))2 with
Rn = 73 2 (i = %)%,

In the previous examples, R, is a plug-in estimate: R, = 6(P,) where P, is
the empirical distribution 1 7, 6.
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Real/bootstrap worlds

sampling law P (related to X)

sample

Xﬂ = {X1’---,Xn}

estimation Rn, = R(x1,...,Xn)

]
Py = 5 Xily 0x
(related to X")

X7 ={x{,....xp}
(sample of size n with

replacement in X")

R(x:,...,x5)
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Summary

Bootstrap Samples Bootstrap Statistics

atistic 1*

~ °

atistic 3*
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| Bootstrap Distribution |

Image from https://www.statisticshowto.datasciencecentral.com
Parametric statistics: assumption on the distribution of the original sample
= (theoretical) law for the sample statistics
Bootstrap: law of the sample statistics is empirically observed from the
bootstrap distribution
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Example: bootstrap estimation of the IC for mean
Sample obtained from y?-distribution (n = 50, number of df: 3)

original sample distribution
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Example: bootstrap estimation of the IC for mean

Distribution of B = 1000 estimates obtained from bootstrap samples:

estimation of a confidence interval from 2.5% and 97.5% quantiles

06 08

density

02 04
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distribution of bootstrap estimates

— true mean
—— estimated mean
—— bootstrap Cl and mean
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=1yn . x and

Q. = quannle({Rn } bofL), L € {0.025,0.975}
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Other practical examples

6 is any parameter to be estimated: the mean of the distribution (as in the

previous example), the median, the variance, slope or intercept in linear
models...

bias estimate @ estimate 6 with the empirical estimate R;;

.....

@ bias of R, is estimated by: £ >, Ry® - Ry
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Other practical examples

6 is any parameter to be estimated: the mean of the distribution (as in the
previous example), the median, the variance, slope or intercept in linear
models...

bias estimate @ estimate 6 with the empirical estimate R;;
@ obtain B bootstrap estimates of 6, (R;®)—
@ bias of Ry, is estimated by: £ ¥}, R:P

-R
n n
variance estimate @ estimate 6 with the empirical estimate Rp;

.....

e variance of R, is estimated by: £ 3, (R>® - R:)2 where

n
= 1 *,b
R; = B Zb Rn
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Other practical examples

6 is any parameter to be estimated: the mean of the distribution (as in the

previous example), the median, the variance, slope or intercept in linear
models...

bias estimate @ estimate 6 with the empirical estimate R;;
@ obtain B bootstrap estimates of 6, (R;®)—
@ bias of Ry, is estimated by: £ ¥}, R:P

-R
n n
variance estimate @ estimate 6 with the empirical estimate Rp;

e variance of R, is estimated by: £ 3, (R>® - R:)2 where
¥ #b
Rn = 1§ Zb Rn
confidence interval estimate @ estimate 6 with the empirical estimate
Rn;

.....

@ confidence interval at risk « of R, is estimated by:
[Qu/2; Q1-q 2] Where Q, = quantile({R:°}p, 1)
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Do it yourself: unrealistic bootstrap by hand!

{xi}i: =1.1763638; —0.6267746; —1.5470410; 1.0828733; —0.4818426

@ n?
@ empirical estimate for the mean?
@ unbiased estimate for the variance?

G
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Do it yourself: unrealistic bootstrap by hand!

{xi}i: =1.1763638; —0.6267746; —1.5470410; 1.0828733; —0.4818426

e n=>5
@ empirical estimate for the mean R,

@ unbiased estimate for the variance
R, =6""= 13 (xi—X)? = 1.015809

X = 13" x =-0.5498297
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Do it yourself: unrealistic bootstrap by hand!

{xi}i: =1.1763638; —0.6267746; —1.5470410; 1.0828733; —0.4818426

en=>5
X = 13" x =-0.5498297

@ empirical estimate for the mean R,
@ unbiased estimate for the variance

R, =6""= 13 (xi—X)? = 1.015809

Bootstrap samples (B = 2):
b = 1: X3, X5, X2, X4, X4
b =2: x4, X3, X5, X1, X4

@ bootstrap estimate for the variance of x?

@ bootstrap estimate for the mean of the empirical variance?
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Do it yourself: unrealistic bootstrap by hand!

{xi}i: =1.1763638; —0.6267746; —1.5470410; 1.0828733; —0.4818426

en=>5
X = 15 >, xi = —0.5498297

@ empirical estimate for the mean R,

@ unbiased estimate for the variance
R, =6""= 13 (xi—X)? = 1.015809

Bootstrap samples (B = 2):
b = 1: X3, X5, X2, X4, X4
b =2: x4, X3, X5, X1, X4

@ bootstrap estimate for the variance of x R;’1 = —0.09798232,
R:? = —1.111595 and Var (X) = 0.2568527

@ bootstrap estimate for the mean of the empirical variance
R:' = 1.328895, R;** = 0.1496966 and E*(o"~") = 0.7392959

=INVA
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@ useR and the package boot

library (boot)

# a sample from a Chi-Square distribution is generated
orig.sample <- rchisq(50, df=3)

# the estimate of the mean is

mean (orig.sample)

# function that calculates estimate from a bootstrap
sample.mean <- function(x, d) { return(mean(x[d])) }

# bootstraping now...

boot.mean <- boot(orig.sample, sample.mean, R=1000)
boot.mean

# ORDINARY NONPARAMETRIC BOOTSTRAP

# Call:

# boot(data = orig.sample, statistic = sample.mean,
# R = 1000)

# Bootstrap Statistics

# original bias std. error

# tl* 3.508524 -0.003604772 0.4382391

o (w1 =
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Section 2

Application of bootstrap to classification: bagging
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What is bagging?

Bagging: ootstrap regat

meta-algorithm based on bootstrap which aggregates an ensemble of
predictors in statistical classification and regression
(special case of model averaging approaches)
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What is bagging?

Bagging: ootstrap regat

meta-algorithm based on bootstrap which aggregates an ensemble of
predictors in statistical classification and regression

(special case of model averaging approaches)

Notations:

a random pair of variables (X, Y): X €e X and Y € R (regression) or
Y e{1,...,K} (classification)

a training set (X, yi)i=1....

Purpose: train a function, ®" : X — {1,..., K}, from (x;, y;);, capable of
predicting Y from X

n of i.i.d. observations of (X, Y)
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What is overfitting?

Function x — y to be estimated




What is overfitting?

Observations we might have

ideal observations
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What is overfitting?

Observations we do have

0 real lite observations
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What is overfitting?

First estimation from the observations: underfitting




What is overfitting?

Second estimation from the observations: accurate estimation
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What is overfitting?

Third estimation from the observations: overfitting
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What is overfitting?

Summary

—— truefunction
—— underfitting
——— accurale
overfitting
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Basics

Suppose that we are given an algorithm:
T = {(. i)} — &7

where ®7 is a classification function: ®7 : x € X — o7 (x) € {1,...,K}.

=INVA
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Basics

Suppose that we are given an algorithm:
T = {(. i)} — &7
where ¢7 is a classification function: ®7 : x € X - ®7 (x) € {1,...,K}.

B classifiers can be defined from B bootstrap samples using this algorithm:
Vb =1,...,B, 7" is abootstrap sample of (x;, y;)i=1...» and ®° = Y

.....

Z=INRA
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Basics

Suppose that we are given an algorithm:
T ={(xyi)}j — o7
where ®7 is a classification function: ®” : x e X — &7 (x) e {1,...,K}.

B classifiers can be defined from B bootstrap samples using this algoritbhm:
Vb =1,...,B, 7" is abootstrap sample of (x;, yi)i=1...n and ®° = &7,

.....

=1,

the regression case):

VxeKX, ®"(x) := argmax_ K'b b (x —k}|

.....

where |S| denotes the cardinal of a finite set S.

ZINA
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Summary

Xl,yl i=1,...,
‘/ubsm Wlth\riw
(Xi» ¥i)ier (Xi» ¥i)ier» (Xi» ¥i)ie®

l prediction algorithm

|

o1 Pb ®B

\

/

aggregation: ®" = most predicted class
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Why using bagging?

Bagging improves stability and limits the risk of overtraining.

Experiment: Using breastCancer dataset from mibench': 699
observations on 10 variables, 9 being ordered or nominal and describing a
tumor and 1 target class indicating if this tumor was malignant or benign.

"Data are coming from the UCI machine learning repository
archive.ics.uci.edu/ml
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To begin: bagging by hand...

for x =

Cl.thickness Cell.size Cell.shape Marg.adhesion

j ¢ 9 d

Epith.c.size Bare.nuclei Bl.cromatin Normal.nucleoli
e j e g

Mitoses

b

and the following classification trees obtained from 3 bootstrap samples,
what is the prediction for x by bagging?

Z=INA
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Cellsize=ab

IL.shape=abc

B coldzesa
senign Collhgpe-a, malignar malignant hean
benign malignant
CeH.si'zs:ab
Bl.cror
benign malgnar
o> <o = z o
ol
sehool
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Cellsize=ab ILshgpe=abe

BL - Bare Cell.size=a
Collstbpo=a porenubeicae rm: li=abet ‘ [ Cell.shabe=abed

senign ! 1 malignar malignant  benign
benign malignant Normal.nicleoli=abf Epith.c Size=ab Normal.nucleoli=agh

malignant senign
benign malignant benign  malignant benign  malignant

malignar

ColLsize=ab.

individual predictions are: “malig-
S —eemne - nANt”; “malignant”, “malignant” so
the final prediction is “malignant”

Toulouse
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Description of computational aspects

100 runs. For each run:

@ split the data into a training set (399 observations) and a test set (300
remaining observations);

@ train a classification tree on the training set. Using the test set,
calculate a test misclassification error by comparing the prediction
given by the trained tree with the true class;

@ generate 500 bootstrap samples from the training set and use them to
compute 500 classification trees. Use them to compute a bagging
prediction for the test sets and calculate a bagging misclassification
error by comparing the bagging prediction with the true class.
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Description of computational aspects

100 runs. For each run:

@ split the data into a training set (399 observations) and a test set (300
remaining observations);

@ train a classification tree on the training set. Using the test set,
calculate a test misclassification error by comparing the prediction
given by the trained tree with the true class;

@ generate 500 bootstrap samples from the training set and use them to
compute 500 classification trees. Use them to compute a bagging
prediction for the test sets and calculate a bagging misclassification
error by comparing the bagging prediction with the true class.

100 test errors
100 bagging errors
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Results of the simulations

0.10 -

0.08 - .

0.06 -

0.04 -

misclassification errors

0.02 - |
test (bagging)

1
test (direct)

method

o°%, _ Toulouse
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Why do bagging predictors work?

References: [Breiman, 1996a, Breiman, 1996b].

For some instable predictors (such as classification trees for instance), a
small change in the training set can yield to a big change in the trained
tree due to overfitting (hence misclassification error obtained on the
training dataset is very optimistic) = Bagging reduces this instability by
using an averaging procedure.

ZINA
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Estimating the generalization ability
Several strategies can be used to estimate the generalization ability of an
algorithm:
@ split the data into a training/test set (~ 67/33%): the model is
estimated with the training dataset and a test error is computed with
the remaining observations;

= INRA
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Estimating the generalization ability
Several strategies can be used to estimate the generalization ability of an
algorithm:

@ split the data into a training/test set (~ 67/33%): the model is
estimated with the training dataset and a test error is computed with
the remaining observations;

@ cross validation: split the data into L folds. For each fold, train a
model without the data included in the current fold and compute the
error with the data included in the fold: the averaging of these L errors
is the cross validation error;

fold 1 fod2 | fold3 | - fold L

errox fold 2: err(¢2, f

CV error: 1 3 err(¢7!,fold /)
train without fold 2: ¢~2

=INRA
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Estimating the generalization ability
Several strategies can be used to estimate the generalization ability of an
algorithm:

@ split the data into a training/test set (~ 67/33%): the model is
estimated with the training dataset and a test error is computed with
the remaining observations;

@ cross validation: split the data into L folds. For each fold, train a
model without the data included in the current fold and compute the
error with the data included in the fold: the averaging of these L errors
is the cross validation error;

@ out-of-bag error (see next slide).
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Out-of-bag observations, prediction and error
OOB (Out-Of Bags) error: error based on the observations not included in
the “bag”™

Xlayl
ieT! ieT? i¢gTB

l prediction algorithm j

o} Pb

\J OOB prediction: ®8(x;)

used to train the model
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Out-of-bag observations, prediction and error
OOB (Out-Of Bags) error: error based on the observations not included in
the “bag”™

o foreveryi=1,...,n, compute the OOB prediction:

,,,,,

(x; is said to be “out-of-bag” for 7° if x; ¢ 7°)

= INRA
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Out-of-bag observations, prediction and error
OOB (Out-Of Bags) error: error based on the observations not included in
the “bag”™

o foreveryi=1,...,n, compute the OOB prediction:

,,,,,

(x; is said to be “out-of-bag” for 7° if x; ¢ 7°)
@ OOB error is the misclassification rate of these estimates:

1 n
= 2 Ljooos(xyer)
i=1
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Section 3

Application of bagging to CART: random forests
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General framework

Notations:
a random pair of variables (X, Y): X e R° and Y € R (regression) or
Y e{1,...,K} (classification)

a training set (X, ¥i)i=1...n of i.i.d. observations of (X, Y)

.....

Purpose: train a function, ®" : RP — {1, ..., K}, from (x;, y;); capable of
predicting Y from X

School
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Overview: Advantages/Drawbacks

Random Forest: introduced by [Breiman, 2001]
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Overview: Advantages/Drawbacks

Random Forest: introduced by [Breiman, 2001]
Advantages

@ classification OR regression (i.e., Y can be a numeric variable or a
factor);

@ non parametric method (no prior assumption needed) and accurate;

@ can deal with a large number of input variables, either numeric
variables or factors;

@ can deal with small/large samples.

School =
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Overview: Advantages/Drawbacks

Random Forest: introduced by [Breiman, 2001]
Advantages

@ classification OR regression (i.e., Y can be a numeric variable or a
factor);

@ non parametric method (no prior assumption needed) and accurate;

@ can deal with a large number of input variables, either numeric
variables or factors;

@ can deal with small/large samples.
Drawbacks
@ black box model;

@ is not supported by strong mathematical results (consistency...) until
now.
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Basis for random forest: bagging of classification trees

Suppose: Y € {1,..., K} (classification problem) and (®°)p—1...

CART classifiers, ®° : RP — {1,..., K}, obtained from B bootstrap
samples of {(x;, yi)}i=1

,,,,, n-

Nathalie Vialaneix | M1 E&S - Big data, part 1




Basis for random forest: bagging of classification trees

Suppose: Y € {1,..., K} (classification problem) and ($°)p—1...
CART classifiers, ®° : RP — {1,..., K}, obtained from B bootstrap
samples of {(x, yi)}i=1

,,,,,

Basic bagging with classification trees

:forb=1,...,Bdo
Construct a bootstrap sample 7 from {(X;, ¥i)}i=1

Train a classification tree from 73, $°
end for

Aggregate the classifiers with majority vote

OISR ORIOR

_ k}|




Random forests
CART bagging with under-efficient trees to avoid overfitting
@ for every tree, each time a split is made, it is preceded by a random

choice of g variables among the p available X = (X', X2, ..., XP).
The current node is then built based on these variables only: it is
defined as the split among the q variables that produces the two
subsets with the largest inter-class variance.
An advisable choice for q is +/p for classification (and p/3 for
regression);

Z=INVA
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Random forests
CART bagging with under-efficient trees to avoid overfitting
@ for every tree, each time a split is made, it is preceded by a random
choice of g variables among the p available X = (X', X2, ..., XP).
The current node is then built based on these variables only: it is
defined as the split among the q variables that produces the two
subsets with the largest inter-class variance.
An advisable choice for q is +/p for classification (and p/3 for
regression);
@ trees are fully developped (no pruning).

Z=INRA
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Random forests
CART bagging with under-efficient trees to avoid overfitting
@ for every tree, each time a split is made, it is preceded by a random
choice of g variables among the p available X = (X', X2, ..., XP).
The current node is then built based on these variables only: it is
defined as the split among the q variables that produces the two
subsets with the largest inter-class variance.
An advisable choice for q is +/p for classification (and p/3 for
regression);
@ trees are fully developped (no pruning).
Hyperparameters
@ those of the CART algorithm (maximal depth, minimum size of a
node, minimum homogeneity of a node...);
@ those that are specific to the random forest: g, number of bootstrap
samples (B also called number of trees).

=INRA
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Random forests
CART bagging with under-efficient trees to avoid overfitting
@ for every tree, each time a split is made, it is preceded by a random
choice of g variables among the p available X = (X', X2, ..., XP).
The current node is then built based on these variables only: it is
defined as the split among the q variables that produces the two
subsets with the largest inter-class variance.
An advisable choice for q is +/p for classification (and p/3 for
regression);
@ trees are fully developped (no pruning).
Hyperparameters
@ those of the CART algorithm (maximal depth, minimum size of a
node, minimum homogeneity of a node...);
@ those that are specific to the random forest: q, number of bootstrap
samples (B also called number of trees).
Random forest are not very sensitive to hyper-parameters setting: default
values for g should work in most cases.
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Additional tools
@ OOB (Out-Of Bags) error: error based on the OOB predictions.
Stabilization of OOB error is a good indication that there is enough
trees in the forest.

1

0.09

0.08

0.07

|
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Additional tools

@ OOB (Out-Of Bags) error: error based on the OOB predictions.
Stabilization of OOB error is a good indication that there is enough
trees in the forest.

@ Importance of a variable to help interpretation: for a given variable X/
(j€{1,...,p}), the importance of X/ is the mean decrease in accuracy
obtained when the values of X/ are randomized.Importance is
estimated with OOB observations (see next slide for details)

nnnnn

vvvvvvvvv
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Importance estimation in random forests

OOB estimation for variable X/
1: forb =1 — B (loop on trees) do '
2:  permute values for (x!);. ¢ro return x( b) =(x],... x,.(”b) o xP),

x,.(’ ®) permuted values

w

predict (xfj’b)) foralli: x; ¢ 7P
end for
return OOB estimation of the importance

]
BZ 2 Ny~ = 2,1 x?)=f

q>b( (
Tb | X @b |77b] X TP { i

a &
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Section 4

Introduction to parallel computing
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Very basic background on parallel computing

Purpose: Distributed or parallel computing seeks at distributing a
calculation on several cores (multi-core processors), on several
processors (multi-processor computers) or on clusters (composed of
several computers).

%%, _ Toulouse
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Very basic background on parallel computing

Purpose: Distributed or parallel computing seeks at distributing a
calculation on several cores (multi-core processors), on several
processors (multi-processor computers) or on clusters (composed of
several computers).

Constraint: communication between cores slows down the computation =

a strategy consists in breaking the calculation into independent parts so
that each processing unit executes its part independently from the others.
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Parallel computing with non-big data

Framework: the data (number of observations n) is small enough to allow

the processors to access them all and the calculation can be easily broken
into independent parts.
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Parallel computing with non-big data

Framework: the data (number of observations n) is small enough to allow
the processors to access them all and the calculation can be easily broken
into independent parts.

Example: bagging can easily be computed with a parallel strategy (it is
said to be embarrassingly parallel):

@ first step: each processing unit creates one (or several) bootstrap
sample(s) and learn a (or several) classifier(s) from it;

@ final step: a processing unit collect all results and combine them into
a single classifier with a majority vote law.

Z=INRA
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Section 5

Standard approaches to scale up statistical methods
to Big Data
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Big Data?

Reference to the fast and recent increase of worldwide data storage:

Global Information Storage Capacity >*”

in optimally compressed bytes

1986
ANALOG
2.6 exabytes
DIGITAL
0.02 exabytes
2002:
“beginning
of the digital age”
50%
% digital:
1% 3% 25% 94 %

Source: Hilbert, M., & Lopez, P. (2011). The World's Technological Capacity to Store, Communicate, and
Compute Information. Science, 332(6025), 60 —65. http://www.martinhilbert.n ldinfo ity-himl

Image taken from Wikipedia Commons, CC BY-SA 3.0, author: Myworkforwiki. exabyte

ANALOG

19 exabytes

- Paper, film, audiotape and vinyl: 6%

- Analogvideotapes (VHS, etc): 94 % ANALOG
- Portable media, flash drives: 2%

- Portable hard disks: 2.4 % DIGITAL Q
- CDs and minidisks: 6.8%

- Computer serversand mainframes: 8.9 %

- Digital tape: 118 %

- DVD/Blu-ray: 228% @

-PCharddisks:44.5 %
123 billion gigabytes

- Others: < 1% fincl. chip carc; mamary cards floppy disks,
mabilz phones, PDAS cameras/cameorders video gamas)

DIGITAL
280 exabytes

~ 108 bits

Toulouse
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Big Data?

Reference to the fast and recent increase of worldwide data storage:

Q@ © 0 0 6 O
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Big Data?

Reference to the fast and recent increase of worldwide data storage:

Log Scale
= 100,000
l— 10,000

|- 1,000

2000 2002 2004 2006 2008 2010
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Big Data?
Reference to the fast and recent increase of worldwide data storage:

Big Data Market Forecast ($US BILLIONS)
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Big Data?
Standard sizes (in bits):
@ 42 x 108: for the complete work of Shakespeare
@ 6.4 x 10°: capacity of human genome (2 bits/pb)
@ 4.5x 10'®: capacity of HD space in Google server farm in 2004
@ 2x10': storage space of Megaupload when it was shut down (2012)

@ 2.4 x 10'8: storage space of facebook data warehouse in 2014, with
an increase of 0.6 x 10'° / day

@ 1.2 x 10?0 storage space of Google data warehouse in 2013

Source: https://en.wikipedia.org/wiki/Orders_of_magnitude_(data)

=INRA
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https://en.wikipedia.org/wiki/Orders_of_magnitude_(data)

Big Data?

The 3V:

@ Volume: amount of data
@ Velocity: speed at which new data is generated
@ Variety: different types of data (text, images, videos, networks...)
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Why are Big Data seen as an opportunity?

@ economic opportunity: advertisements, recommendations, ...

@ social opportunity: better job profiling

@ find new solutions to existing problems: open data websites with
challenges or publication of re-use https://www.data.gouv. fr,
https://ressources.data.sncf.com or
https://data.toulouse-metropole. fr

8 data.gouv.fr Plateforme ouverte des données publiques francaises

<D Comnexion/ Inscription

Q  Recherche

Partagez, améliorez et réutilisez les
données publiques

=

MEILLEURES REUTILISATIONS DERNIERES REUTILISATIONS

Proportion d'ambassadeurs a particule, par année de nomination (1944-2012) Anonymiser les textos de lol
(]
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When should we consider data as “big”?

We deal with Big Data when:
@ data are at google scale (rare)
@ data are big compared to our computing capacities

Nathalie Vialaneix | M1 E&S - Big data, part 1




When should we consider data as “big”?

We deal with Big Data when:
@ data are at google scale (rare)
@ data are big compared to our computing capacities

R is not well-suited for working with data structures larger than
about 10-20% of a computer’'s RAM. Data exceeding 50% of
available RAM are essentially unusable because the overhead of
all but the simplest of calculations quickly consumes all available
RAM. Based on these guidelines, we consider a data set large if
it exceeds 20% of the RAM on a given machine and massive if it
exceeds 50%.
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When should we consider data as “big”?

We deal with Big Data when:
@ data are at google scale (rare)

@ data are big compared to our computing capacities ... and depending

on what we need to do with them

R is not well-suited for working with data structures larger than
about 10-20% of a computer’'s RAM. Data exceeding 50% of
available RAM are essentially unusable because the overhead of
all but the simplest of calculations quickly consumes all available
RAM. Based on these guidelines, we consider a data set large if
it exceeds 20% of the RAM on a given machine and massive if it
exceeds 50%.
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Big Data and Statistics

Evolution of problems posed to statistics:
@ “small n, small p” problems
@ large dimensional problems: p > norp > n
@ big data problems: nis very large

ZINA
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Big Data and Statistics

Evolution of problems posed to statistics:
@ “small n, small p” problems
@ large dimensional problems: p > norp > n
@ big data problems: nis very large

[Jordan, 2013]: scale statistical methods originally designed to deal with
small n and take advantage of parallel or distributed computing
environments to deal with large/big n while ensuring good properties
(consistency, good approximations...).

hool
*  Nathalie Vialaneix | M1 E&S - Big data, part 1 == cameir  39/67



Big Data and Statistics

Evolution of problems posed to statistics:
@ “small n, small p” problems
@ large dimensional problems: p > norp > n
@ big data problems: nis very large

[Jordan, 2013]: scale statistical methods originally designed to deal with
small n and take advantage of parallel or distributed computing
environments to deal with large/big n while ensuring good properties
(consistency, good approximations...).

This requires a closer cooperation between statisticians and computer
scientists.

Z=INRA
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Purpose of this presentation

What we will discuss

Standard approaches used to scale statistical methods with examples of
applications to learning methods discussed in previous presentations.
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Purpose of this presentation

What we will discuss

Standard approaches used to scale statistical methods with examples of
applications to learning methods discussed in previous presentations.

What we will not discuss

Practical implementations on various computing environments or
programs in which these approaches can be used.
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Organization of the talk

)

-l

Data
big n
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Organization of the talk

Subsampling

S

model for small
data
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Organization of the talk

Divide & Conquer

modeli for
small data

)
——

model2 for
small data

\ v
 mm—
model3 for
small data
-~

combined
model

)
model4 for
small data

N— ./
——

model Q for
small data
-~
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Organization of the talk

modeli for
small data

Online

update

update final model
y

—
model3

—
update

—
\ 4
Emmm—

model T

N—

Z=INRA
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Overview of BLB
[Kleiner et al., 2012, Kleiner et al., 2014]

@ method used to scale any bootstrap estimation
@ consistency result demonstrated for a bootstrap estimation
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Overview of BLB
[Kleiner et al., 2012, Kleiner et al., 2014]

@ method used to scale any bootstrap estimation
@ consistency result demonstrated for a bootstrap estimation

Here: we describe the approach in the simplified case of bagging
(illustration for random forest)

EINA
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Overview of BLB
[Kleiner et al., 2012, Kleiner et al., 2014]

@ method used to scale any bootstrap estimation
@ consistency result demonstrated for a bootstrap estimation

Here: we describe the approach in the simplified case of bagging
(illustration for random forest)

Framework: (Xi, Yi)i=1...n @ learning set. We want to define a predictor of
Y € R from X given the learning set.
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Standard bagging

)<I’ \/I ..... n
/m wﬁh\iw
Xh YI IE‘I‘1 )(h Y IETb XI9 \/I)IETB
fil b B

aggregation: fooosuap — L 5B b
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Standard bagging

)<I’ \/I ..... n
/m wﬁth
Xh YI IE‘I‘1 )(h Y IETb XI9 \/I)IETB
fil b B

inn- fbootstrap _ 1 5B Fb
aggregation: PO = 2 5 L f

Advantage for Big Data: Bootstrap estimators can be learned in paraIIeI
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Problem with standard bagging

When n is big, the number of different observations in 74, is ~ 0.63n = still
BIG!
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Problem with standard bagging

When n is big, the number of different observations in 74, is ~ 0.63n = still
BIG!

First solution...: [Bickel et al., 1997] propose the “m-out-of-n” bootstrap:
bootstrap samples have size m with m < n
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Problem with standard bagging

When n is big, the number of different observations in 74, is ~ 0.63n = still
BIG!

First solution...: [Bickel et al., 1997] propose the “m-out-of-n” bootstrap:
bootstrap samples have size m with m < n

But: The quality of the estimator strongly depends on m!
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Problem with standard bagging

When n is big, the number of different observations in 74, is ~ 0.63n = still
BIG!

First solution...: [Bickel et al., 1997] propose the “m-out-of-n” bootstrap:
bootstrap samples have size m with m < n

But: The quality of the estimator strongly depends on m!

Idea behind BLB

Use bootstrap samples having size n but with a very small number of
different observations in each of them.
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Presentation of BLB

(X1, Y1) ... (Xn, Yn)
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Presentation of BLB

ed vy oD, vy

sampling, no
replacement
(size m<n

(X1, Y1) . (Xns Yn)
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Presentation of BLB

over-sam
R I ORI ‘ :
sampling, no \ RS
n1 Ny
replacement
(size m<n
(X19Y1) (Xn, Yn) .

n$B1'1) ...nff“n

e
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Presentation of BLB

(1,1

ny
over-samj;liza(7

A0 vD) ) vy ‘

sampling, no \ 1 (182)

replacement

(size m<n

(X1,Y1) (Xn, Yn) .

e

n$B1'1)...

,,Ef1 1)

_ /f\(B1,1)
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Presentation of BLB

(1,1

ny
over-samj;liza(7

el ... ea. v ‘ mean H

sampling, no \ 152 n(1:82) _,?(1 By)

replacement

(size m<n

(X1,Y1) (Xn, Yn) .

n$B1‘1)...nEf1'1) E—— ?(51,1)

e
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Presentation of BLB

(1,1

ny
over-samj;liza(7

<, vy o, vy ‘ mean

sampling, no \ 152 n(1:82) _,?(1,52)/

replacement
(size m<n

(X1,Y1) (Xn, Yn) .

n$B1‘1)...nEf1'1) E—— ?(51,1)

e

'f1

mean

?BLB
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What is over-sampling and why is it working?
BLB steps:
@ create B; samples (without replacement) of size m ~ n (with
y € [0.5,1]: for n = 108 and y = 0.6, typical m is about 4000,
compared to 630 000 for standard bootstrap
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What is over-sampling and why is it working?
BLB steps:
@ create By samples (without replacement) of size m ~ n” (with
v €[0.5,1]

@ for every subsample 7, repeat B, times:
» over-sampling: affect weights (n4, ..., ny) simulated as M(n, %ﬂm) to
observations in 7,
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What is over-sampling and why is it working?
BLB steps:
@ create B; samples (without replacement) of size m ~ n (with
v €[0.5,1]

@ for every subsample 7, repeat B, times:
» over-sampling: affect weights (n4, ..., ny) simulated as M(n, %]lm) to
observations in 7,
» estimation step: train an estimator with weighted observations (if the
learning algorithm allows a genuine processing of weights,
computational cost is low because of the small size of m)
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What is over-sampling and why is it working?
BLB steps:
@ create B; samples (without replacement) of size m ~ n (with
v €[0.5,1]

@ for every subsample 7, repeat B, times:
» over-sampling: affect weights (n4, ..., ny) simulated as M(n, %]lm) to
observations in 7,
» estimation step: train an estimator with weighted observations

© aggregate by averaging
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What is over-sampling and why is it working?
BLB steps:
@ create B; samples (without replacement) of size m ~ n (with
v €[0.5,1]

@ for every subsample 7, repeat B, times:
» over-sampling: affect weights (n4, ..., ny) simulated as M(n, %]lm) to
observations in 7,
» estimation step: train an estimator with weighted observations

© aggregate by averaging

Remark: Final sample size (3", nj) is equal to n (with replacement) as in
standard bootstrap samples.
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Overview of Map Reduce

Map Reduce is a generic method to deal with massive datasets stored on
a distributed filesystem.

™
It has been developped by Google = [Dean and Ghemawat, 2004] (See also
[Chamandy et al., 2012] for example of use at Google).
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*  Nathalie Vialaneix | M1 E&S - Big data, part 1



Overview of Map Reduce

Data 1

Data 2

Data 3

The data are broken into several bits.
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Overview of Map Reduce

Data1 — Map  —{(key,value)}

Data2 — Map  —{(key,value)}

Data3 — Map —{(key,value)}

Each bit is processed through ONE map step and gives.pairs {(key, value)}.

=INA
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Overview of Map Reduce

Datai — Map  —{(key,value)}

Data2 — Map —{(key,value)}

Data3 — Map  —{(key,value)}

Map jobs must be independent! Result: indexed data.
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Overview of Map Reduce

Data1 — Map  —{(key,value)}

Data2 — Map  —{(key,value)} Reduce
key = key;

OUTPUT
ﬁ

Reduce
key = key,

Data3 — Map —{(key,value)}

Each key is processed through ONE reduce step to produce the output.

=INA
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Map Reduce in practice

(stupid) Case study: A huge number of sales identified by the shop and
the amount.

shop1,25000
shop2,12
shop2, 1500
shop4,47
shopl,358

Question: Extract the total amount per shop.

@ Standard way (sequential)

» the data are read sequentially;
» a vector containing the values of the current sum for every shop is
updated at each line.

@ Map Reduce way (parallel)...

=INRA
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Map Reduce for an aggregation framework

Data 1

Data 2

Data 3

The data are broken into several bits.
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Map Reduce for an aggregation framework

Data1 — Map  —{(key,value)}

Data2 — Map —{(key,value)}

Data3 — Map  —{(key,value)}

Map step: reads the line and outputs a pair key=shop and value=amount.

%%, _ Toulouse
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Map Reduce for an aggregation framework

Data1 — Map  —{(key,value)}

Data2 — Map  —{(key,value)} Reduce
key = key;

OUTPUT
Reduce
key = key,

Data3 — Map  —{(key,value)}

Reduce step: for every key (i.e., shop), compute the sum of values.

ZINA
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In practice, Hadoop framework CrlEmlmp

Apache Hadoop: open-source software framework for Big Data
programmed in Java. It contains:
@ adistributed file system (data seem to be accessed as if they were on
a single computer, though distributed on several storage units);
@ a map-reduce framework that takes advantage of data locality.
It is divided into: Name Nodes (typically two) that manage the file system

index and Data Nodes that contain a small portion of the data and
processing capabilities.

ZINA
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In practice, Hadoop framework CrlEmlmp

Apache Hadoop: open-source software framework for Big Data
programmed in Java. It contains:

@ adistributed file system (data seem to be accessed as if they were on
a single computer, though distributed on several storage units);

@ a map-reduce framework that takes advantage of data locality.

It is divided into: Name Nodes (typically two) that manage the file system
index and Data Nodes that contain a small portion of the data and
processing capabilities.

Data inside HDFS are not indexed (unlike SQL data for instance) but
stored as simple text files (e.g., comma separated) = queries cannot be
performed simply.

School
*  Nathalie Vialaneix | M1 E&S - Big data, part 1 = : 50/67



In practice, Hadoop framework CrlEmlmp

Apache Hadoop: open-source software framework for Big Data
programmed in Java. It contains:

@ adistributed file system (data seem to be accessed as if they were on
a single computer, though distributed on several storage units);

@ a map-reduce framework that takes advantage of data locality.

It is divided into: Name Nodes (typically two) that manage the file system
index and Data Nodes that contain a small portion of the data and
processing capabilities.

Data inside HDFS are not indexed (unlike SQL data for instance) but
stored as simple text files (e.g., comma separated) = queries cannot be
performed simply.

Advantages/drawback: Hadoop is designed to realize tasks on a very
large number of computers (“data at Google scale”): Map tasks are made
locally to speed the processing. But this advantage is lost when
computation tasks are intensive on moderately large datasets (which fits in

a single computer).
o =INRA
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Hadoop & R

How will we be using it? We will be using a R interface for Hadoop,
composed of several packages (see

https://github.com/RevolutionAnalytics/RHadoop/wiki):
@ studied: rmr: Map Reduce framework (can be used as if Hadoop is
installed, even if it is not...);
@ not studied: rhdfs (to manage Hadoop data filesystem), rhbase (to

manage Hadoop HBase database), plyrmr (advanced data
processing functions with a plyr syntax).

Installing rmr without Hadoop:
http://tuxette.nathalievilla.org/?p=1455
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Application of MR to statistical learning methods

Learning problem: (X, Y) st X € X and Y € R (regression) or

Ye{l, ..., K- 1} (classification)

... that has to be learned from the observations (X;, Y;)i=1

...with n very large.
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Standard approach for methods based on a sommation
over N [Chu et al., 2010]

When a classification method is based on a sommation of the form
n
D F(X, Vi)
i=1

it is easily addressed under the MR framework:
@ data are split between Q bits sent to each map job;
@ a map job computes a partial sommation Y iccurrent bit F(Xi, Yi);
@ the reducer then sums up intermediate results to get the final result.
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Example: linear model
Framework:
Y=B"X+¢

in which g is estimated by solving ¥ ,3 = I', with ¥, = 1yn  XiXT and
Mh=130, XY
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Example: linear model
Framework:
Y=B"X+¢

in which g is estimated by solving ¥ ,3 = I', with ¥, = iyn, XX and
Mn= 520 XiYi.

MR for linear model

@ Mapstep: Vr=1, ..., Q (chunk of data 7,), n, = Cardr,,

o = Yier, XiX." and ¥, = Yier, XiYi (key is equal to 1 for every
output)

o Q 2921 oy 2,021 Yn
© Reduce step (onlyonetask): n =Y . n, X, = === T, = ===
and finally, 3 = XTI,

]
*  Nathalie Vialaneix | M1 E&S - Big data, part 1



Example: linear model
Framework:
Y=B"X+¢

in which g is estimated by solving ¥ ,3 = I', with ¥, = iyn, XX and
Mn= 520 XiYi.

MR for linear model

@ Mapstep: Vr=1, ..., Q (chunk of data 7,), n, = Cardr,,
o = Yier, XiX." and ¥, = Yier, XiYi (key is equal to 1 for every
output)

@ Red | K:n=3C n,¥,= 2% p _ ILvh
e ucestei)(onyonetas )n=37,n,3p="5—"T==7=
and finally, 3 = XTI,

Remark: This approach is strictly equivalent to estimating the linear model
from the whole dataset directly.

hool
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A more tricky problem: penalized linear model

New framework: minimize penalized least squares
- Z -7 X, + Apen(B)

where, 1 € RT and (usually)
e pen(B) = ||BII5 = Ef’ 1,6’2 (ridge regularization [Tikhonov, 1963]);

e pen(B) = |18ll1 = Z,-:1 |8jI (LASSO [Tibshirani, 1996])

Nathalie Vialaneix | M1 E&S - Big data, part 1




A more tricky problem: penalized linear model

New framework: minimize penalized least squares

—Z -p" X, +/lpen(ﬂ)

where, 1 € RT and (usually)
e pen(B) = ||BII5 = Ef’ 1,6’2 (ridge regularization [Tikhonov, 1963]);

e pen(B) = |18ll1 = Z,-:1 |8jI (LASSO [Tibshirani, 1996])

The approach of simply summing the different quantities obtained in the
different Map tasks is not valid anymore as explained in [Chen and Xie, 2014]
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A more tricky problem: penalized linear model

New framework: minimize penalized least squares

—Z -p" X, +/lpen(ﬂ)

where, 1 € RT and (usually)
e pen(B) = ||BII5 = Ef’ 1,82 (ridge regularization [Tikhonov, 1963]);
e pen(B) = |18ll1 = Z,-:1 |8jI (LASSO [Tibshirani, 1996])

The approach of simply summing the different quantities obtained in the
different Map tasks is not valid anymore as explained in [Chen and Xie, 2014]
= solution involves weighting the different samples (7),~1, .. q to obtain
asymptotic equivalence when Q = n° for0 < 6 < 1/2.

hool ==
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MR implementation of random forest

A Map/Reduce implementation of random forest is included in Mahout

(Apache scalable machine learning library) which works as
[del Rio et al., 2014]:

@ data are split between Q bits sent to each Map job;
@ a Map job train a random forest with a small number of trees in it;

@ there is no Reduce step (the final forest is the combination of all trees
learned in the Map jobs).
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MR implementation of random forest

A Map/Reduce implementation of random forest is included in Mahout

(Apache scalable machine learning library) which works as
[del Rio et al., 2014]:

@ data are split between Q bits sent to each Map job;
@ a Map job train a random forest with a small number of trees in it;

@ there is no Reduce step (the final forest is the combination of all trees
learned in the Map jobs).

Note that this implementation is not equivalent to the original random

forest algorithm because the forests are not built on bootstrap samples of
the original data set.
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Drawbacks of MR implementation of random forest

@ Locality of data can yield to biased random forests in the different Map
jobs = the combined forest might have poor prediction performances
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Drawbacks of MR implementation of random forest

@ Locality of data can yield to biased random forests in the different Map
jobs = the combined forest might have poor prediction performances

@ OOB error cannot be computed precisely because Map job are
independent. A proxy of this quantity is given by the average of OOB
errors obtained from the different Map tasks = again this quantity
must be biased due to data locality.

Z=INA
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MR-RF in practice: case study [Genuer et al., 2017]

15,000,000 observations generated from: Y with
P(Y =1) = P(Y = —1) = 0.5 and the conditional distribution of the

.....

@ with probability equal to 0.7, X¥) ~ N/(jy,1) for j € {1,2,3} and
XW ~ N(0,1) for j € {4,5,6);

@ with probability equal to 0.3, X/ ~ N(0,1) for j € {1,2,3} and
X0 ~ N((j-3)y, 1) for j € {4,5,6);

e X"~ N(0,1).
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MR-RF in practice: case study [Genuer et al., 2017]

15,000,000 observations generated from: Y with
P(Y =1) = P(Y = —1) = 0.5 and the conditional distribution of the
@ with probability equal to 0.7, X¥) ~ N/(jy,1) for j € {1,2,3} and
XW ~ N(0,1) for j € {4,5,6);
@ with probability equal to 0.3, X/ ~ N(0,1) for j € {1,2,3} and
X0 ~ N((j-3)y, 1) for j € {4,5,6);
e X"~ N(0,1).

Comparison of subsampling, BLB, MR with well distributed data within
Map jobs and with Map jobs dealing with (mostly) data from one of the two
submodels.

=INRA
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Discussion on MR-RF on a simulation study

Method Comp. time | BDerrForest | errForest errTest

sampling 10% 3 min 4.622¢(-3) | 4.381e(-3) | 4.300e(-3)
sampling 1% 9 sec 4.586e(-3) | 4.363e(-3) | 4.400e(-3)
sampling 0.1% 1 sec 5.600e(-3) | 4.714e(-3) | 4.573e(-3)
sampling 0.01% 0.3 sec 4.666¢e(-3) 5.957e(-3) | 5.753e(-3)
BLB-RF 5/20 1 min 4.138e(-3) | 4.294e(-3) | 4.267¢e(-3)
BLB-RF 10/10 3 min 4.138e(-3) | 4.278e(-3) | 4.267¢e(-3)
MR-RF 100/1 2 min 1.397e(-2) | 4.235¢e(-3) | 4.006e(-3)
MR-RF 100/10 2 min 8.646e(-3) | 4.155e(-3) | 4.293e(-3)
MR-RF 10/10 6 min 8.501e(-3) | 4.290e(-3) | 4.253e(-3)
MR-RF 10/100 21 min 4.556e(-3) | 4.249e(-3) | 4.260e(-3)
MR x-biases 100/1 3 min 3.504e(-3) | 1.010e(-1) | 1.006e(-1)
MR x-biases 100/10 3 min 2.082¢(-3) | 1.010e(-1) | 1.008e(-1)
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Discussion on MR-RF on a simulation study

Method Comp. time | BDerrForest | errForest errTest

sampling 10% 3 min 4.622¢(-3) 4.381e(-3) | 4.300e(-3)
sampling 1% 9 sec 4.586e(-3) | 4.363e(-3) | 4.400e(-3)
sampling 0.1% 1 sec 5.600e(-3) | 4.714e(-3) | 4.573e(-3)
sampling 0.01% 0.3 sec 4.666¢e(-3) 5.957e(-3) | 5.753e(-3)
BLB-RF 5/20 1 min 4.138e(-3) | 4.294e(-3) | 4.267¢e(-3)
BLB-RF 10/10 3 min 4.138e(-3) | 4.278e(-3) | 4.267¢e(-3)
MR-RF 100/1 2 min 1.397e(-2) | 4.235¢e(-3) | 4.006e(-3)
MR-RF 100/10 2 min 8.646e(-3) | 4.155e(-3) | 4.293e(-3)
MR-RF 10/10 6 min 8.501e(-3) | 4.290e(-3) | 4.253e(-3)
MR-RF 10/100 21 min 4.556e(-3) | 4.249e(-3) | 4.260e(-3)
MR x-biases 100/1 3 min 3.504e(-3) | 1.010e(-1) | 1.006e(-1)
MR x-biases 100/10 3 min 2.082¢(-3) | 1.010e(-1) | 1.008e(-1)

@ all methods provide satisfactory results except MR when locality
biases are introduced

@ average OOB error over the Map forests can be a bad approximation
of true OOB error (sometimes optimistic, sometimes pessimistic)
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Another MR implementation of random forest

... using Poisson bootstrap [Chamandy et al., 2012] which is based on the fact
that (for large n):

1
Binom (n, E) ~ Poisson(1)
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Another MR implementation of random forest

... using Poisson bootstrap [Chamandy et al., 2012] which is based on the fact
that (for large n):

1
Binom (n, E) ~ Poisson(1)

@ MapstepVr=1,..., Q(chunk of data 7,). Vi € 7, generate B
random i.i.d. random variables from Poisson(1) nf.’ (b=1,...,B).
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Another MR implementation of random forest

... using Poisson bootstrap [Chamandy et al., 2012] which is based on the fact
that (for large n):

1
Binom (n, E) ~ Poisson(1)

@ MapstepVr=1,..., Q(chunk of data 7,). Vi € 7, generate B
random i.i.d. random variables from Poisson(1) nf.’ (b=1,...,B).
Output: (key, value) are (b, (i, n?)) for all pairs (i, b) st n® # 0
(indices i st nf’ # 0 are in bootstrap sample number b n,@’ times);
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Another MR implementation of random forest

... using Poisson bootstrap [Chamandy et al., 2012] which is based on the fact
that (for large n):

1
Binom (n, E) ~ Poisson(1)

@ MapstepVr=1,..., Q(chunk of data 7,). Vi € 7, generate B
random i.i.d. random variables from Poisson(1) nf.’ (b=1,...,B).
Output: (key, value) are (b, (i, n?)) for all pairs (i, b) st n® # 0
(indices i st nf’ # 0 are in bootstrap sample number b n,@’ times);

@ Reduce step proceeds bootstrap sample number b: a tree is built
from indices i st n? # 0 repeated n? times.
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Another MR implementation of random forest

... using Poisson bootstrap [Chamandy et al., 2012] which is based on the fact
that (for large n):

1
Binom (n, E) ~ Poisson(1)

@ MapstepVr=1,..., Q(chunk of data 7,). Vi € 7, generate B
random i.i.d. random variables from Poisson(1) nf.’ (b=1,...,B).
Output: (key, value) are (b, (i, n?)) for all pairs (i, b) st n® # 0
(indices i st nf’ # 0 are in bootstrap sample number b n,@’ times);

@ Reduce step proceeds bootstrap sample number b: a tree is built
from indices i st n? # 0 repeated n? times.
Output: A tree... All trees are collected in a forest.

Z=INRA
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Another MR implementation of random forest

... using Poisson bootstrap [Chamandy et al., 2012] which is based on the fact
that (for large n):

1
Binom (n, E) ~ Poisson(1)

@ MapstepVr=1,..., Q(chunk of data 7,). Vi € 7, generate B
random i.i.d. random variables from Poisson(1) nf.’ (b=1,...,B).
Output: (key, value) are (b, (i, n?)) for all pairs (i, b) st n® # 0
(indices i st nf’ # 0 are in bootstrap sample number b n,@’ times);

@ Reduce step proceeds bootstrap sample number b: a tree is built
from indices i st n? # 0 repeated n? times.
Output: A tree... All trees are collected in a forest.

Closer to using RF directly on the entire dataset But: every Reduce job
should deal with approximately 0.63 x n different observations... (only the
bootstrap part is simplified)

=INRA
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Online learning framework

.....

predictor f,
New data arrive (Xi, Yi)i=n+1...
entire dataset (Xj, Yi)i=1...n+m?

.....
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Online learning framework

.....

predictor f,
New data arrive (Xj, Y)i=n+1...
entire dataset (X, Yi)i=1...n+m?

.....

@ Naive approach: re-train a model from (Xj, Y;)i=1...n+m
@ More interesting approach: update f, with the new information
(Xfa Yi)i:n+1 ..... n+m
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Online learning framework

predictort,
New data arrive (Xj, Y)i=n+1...
entire dataset (X, Yi)i=1...n+m?

.....

@ Naive approach: re-train a model from (Xj, Y;)i=1...n+m
@ More interesting approach: update f, with the new information
(Xfa Yi)i:n+1 ..... n+m
Why is it interesting?

@ computational gain if the update has a small computational cost (it
can even be interesting to deal directly with big data which do not
arrive in stream)

@ storage gain

=INRA
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Online learning framework

.....

predictor f,
New data arrive (Xj, Y)i=n+1...
entire dataset (X, Yi)i=1...n+m?

.....

@ Naive approach: re-train a model from (Xj, Y;)i=1...n+m
@ More interesting approach: update f, with the new information
(Xfa Yi)i:n+1 ..... n+m
Why is it interesting?

@ computational gain if the update has a small computational cost (it
can even be interesting to deal directly with big data which do not
arrive in stream)

@ storage gain

Additional remark: Restricted to stationnary problems (as opposed to
“concept drift”
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Framework of online bagging

)
fo=—= > 2
B b=1
in which
° ?ﬁ has been built from a bootstrap sample in {1, ..., n}
@ we know how to update ?,‘,’ with new data online

ZINA
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Framework of online bagging

)
fo=—= > 2
B b=1
in which
° ?,? has been built from a bootstrap sample in {1, ..., n}
@ we know how to update ?,‘,’ with new data online

Question: Can we update the bootstrap samples online when new data
(Xi, Yi)i=n+1....n+m arrive?

.....

=INRA
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Online bootstrap using Poisson bootstrap

@ generate weights for every bootstrap samples and every new
observation: n? ~ Poisson(1) fori=n+1, ..., n+ mand
b=1,...,B
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Online bootstrap using Poisson bootstrap

@ generate weights for every bootstrap samples and every new
observation: n? ~ Poisson(1) fori=n+1, ..., n+ mand
b=1,...,B

@ update ?,? with the observations X; such that nf’ # 0, each repeated
n® times

School
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Online bootstrap using Poisson bootstrap

@ generate weights for every bootstrap samples and every new
observation: n? ~ Poisson(1) fori=n+1, ..., n+ mand
b=1,...,B

@ update ?,? with the observations X; such that nf’ # 0, each repeated
n® times

© update the predictor:

>
o

. 18
fn+m:§Z

n+m-

o
I\

hool
*  Nathalie Vialaneix | M1 E&S - Big data, part 1 == sanceamer  63/67



Application: online PRF
In Purely Random Forest, the trees are generated independently from the
data. It is described by:

eVvYb=1,...,B, ?,?: PR tree for bootstrap sample number b

e Vb=1,..., B, forall terminal leaf / in 2, obs?’ is the number of
observations in (X;)i=1, .. » Which falls in leaf | and valﬁ" is the average
Y for these observations (regression framework)

Z=INA
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Application: online PRF
In Purely Random Forest, the trees are generated independently from the
data. It is described by:

eVvYb=1,...,B, ?,?: PR tree for bootstrap sample number b

e Vb=1,..., B, forall terminal leaf / in 2, obs?’ is the number of
observations in (X;)i=1, .. » Which falls in leaf | and valﬁ" is the average
Y for these observations (regression framework)

Online update with Poisson bootstrap:

eVb=1,...,BVYie{n+1,...,n+m}stnP # 0and for the terminal
leaf | of X;:
val?! x obs™ + nP x Y

valf’” = o 5
obs;”, + n;

(online update of the mean...)

=INRA
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Application: online PRF
In Purely Random Forest, the trees are generated independently from the
data. It is described by:

eVvYb=1,...,B, ?,?: PR tree for bootstrap sample number b

e Vb=1,..., B, forall terminal leaf / in 2, obs?’ is the number of
observations in (X;)i=1, .. » Which falls in leaf | and valﬁ" is the average
Y for these observations (regression framework)

Online update with Poisson bootstrap:

eVb=1,...,BVYie{n+1,...,n+m}stnP # 0and for the terminal
leaf | of X;:
val?! x obs™ + nP x Y

valf’” = o 5
obs;”, + n;

(online update of the mean...)
e obs’' = obs + nP

=INRA
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Have you survived to Big Data?
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Section 6

References
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Thank you for your attention..

... questions?
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