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Course outline

1 Short introduction to bootstrap

2 Application of bootstrap to classification: bagging

3 Application of bagging to CART: random forests

4 Introduction to parallel computing

5 Standard approaches to scale up statistical methods to Big Data
Subsampling: Bag of Little Bootstrap (BLB)
Divide & Conquer
Online learning: online bagging
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Section 1

Short introduction to bootstrap
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Basics about bootstrap

General method for:

parameter estimation (especially bias)

confidence interval estimation

in a non-parametric context (i.e., when the law of the observation is
completely unknown).

Can handle small sample size (n small).

[Efron, 1979] proposes to simulate the unknown law using re-sampling
from the observations.
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Notations and problem

Framework: X random variable with (unknown) law P.

Problem: estimation of a parameter θ(P) with an estimate
Rn = R(x1, . . . , xn) where x1, ..., xn are i.i.d. observations of P?

Standard examples:

estimation of the mean: θ(P) =
∫

xdP(x) with Rn = x = 1
n
∑n

i=1 xi ;

estimation of the variance: θ(P) =
∫

x2dP(x) −
(∫

xdP(x)
)2

with
Rn = 1

n−1
∑n

i=1(xi − x)2.

In the previous examples, Rn is a plug-in estimate: Rn = θ(Pn) where Pn is
the empirical distribution 1

n
∑n

i=1 δxi .
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Real/bootstrap worlds

sampling law P (related to X ) Pn = 1
n
∑n

i=1 δxi

(related to Xn)

sample Xn = {x1, . . . , xn}

Xn
∗ = {x∗1 , . . . , x

∗
n}

(sample of size n with

replacement in Xn)

estimation Rn = R(x1, . . . , xn)
R∗n =

R(x∗1 , . . . , x
∗
n)
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Summary

Image from https://www.statisticshowto.datasciencecentral.com

Parametric statistics: assumption on the distribution of the original sample
⇒ (theoretical) law for the sample statistics
Bootstrap: law of the sample statistics is empirically observed from the
bootstrap distribution
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Example: bootstrap estimation of the IC for mean
Sample obtained from χ2-distribution (n = 50, number of df: 3)

histogram of (xi)i=1,...,n and Rn = 1
n
∑n

i=1 xi

Distribution of B = 1000 estimates obtained from bootstrap samples:
estimation of a confidence interval from 2.5% and 97.5% quantiles

histogram of (R∗,bn )b=1,...,B with R∗,bn = 1
n
∑n

i=1 x∗i and
Qµ = quantile({R∗,bn }b , µ), µ ∈ {0.025, 0.975}
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Other practical examples
θ is any parameter to be estimated: the mean of the distribution (as in the
previous example), the median, the variance, slope or intercept in linear
models...

bias estimate estimate θ with the empirical estimate Rn;
obtain B bootstrap estimates of θ, (R∗,bn )b=1,...,B ;
bias of Rn is estimated by: 1

B
∑

b R∗,bn − Rn

variance estimate estimate θ with the empirical estimate Rn;
obtain B bootstrap estimates of θ, (R∗,bn )b=1,...,B ;
variance of Rn is estimated by: 1

B
∑

b(R∗,bn − R∗n)2 where
R∗n = 1

B
∑

b R∗,bn

confidence interval estimate estimate θ with the empirical estimate
Rn;
obtain B bootstrap estimates of θ, (R∗,bn )b=1,...,B ;
confidence interval at risk α of Rn is estimated by:
[Qα/2; Q1−α/2] where Qµ = quantile({R∗,bn }b , µ)
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Do it yourself: unrealistic bootstrap by hand!

{xi}i : −1.1763638; −0.6267746; −1.5470410; 1.0828733; −0.4818426

n?

= 5

empirical estimate for the mean?

Rn = x = 1
n
∑n

i=1 xi = −0.5498297

unbiased estimate for the variance?

Rn = σ̂n−1 = 1
n−1

∑n
i=1(xi − x)2 = 1.015809

Bootstrap samples (B = 2):
b = 1: x3, x5, x2, x4, x4

b = 2: x1, x3, x5, x1, x1

bootstrap estimate for the variance of x

R∗,1n = −0.09798232,
R∗,2n = −1.111595 and V̂ar

∗
(x) = 0.2568527

bootstrap estimate for the mean of the empirical variance

R∗,1n = 1.328895, R∗,2n = 0.1496966 and Ê∗(σn−1) = 0.7392959
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useR and the package boot
library(boot)
# a sample from a Chi-Square distribution is generated
orig.sample <- rchisq(50, df=3)
# the estimate of the mean is
mean(orig.sample)
# function that calculates estimate from a bootstrap
sample.mean <- function(x, d) { return(mean(x[d])) }
# bootstraping now...
boot.mean <- boot(orig.sample, sample.mean, R=1000)
boot.mean
# ORDINARY NONPARAMETRIC BOOTSTRAP
# Call:
# boot(data = orig.sample, statistic = sample.mean,
# R = 1000)
# Bootstrap Statistics :
# original bias std. error
# t1* 3.508524 -0.003604772 0.4382391
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Section 2

Application of bootstrap to classification: bagging
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What is bagging?

Bagging: Bootstrap Aggregating
meta-algorithm based on bootstrap which aggregates an ensemble of
predictors in statistical classification and regression
(special case of model averaging approaches)

Notations:

a random pair of variables (X ,Y): X ∈ X and Y ∈ R (regression) or
Y ∈ {1, . . . ,K } (classification)

a training set (xi , yi)i=1,...,n of i.i.d. observations of (X ,Y)

Purpose: train a function, Φn : X → {1, . . . ,K }, from (xi , yi)i , capable of
predicting Y from X
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What is overfitting?
Function x → y to be estimated
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What is overfitting?
Observations we might have

Nathalie Vialaneix | M1 E&S - Big data, part 1 14/67



What is overfitting?
Observations we do have
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What is overfitting?
First estimation from the observations: underfitting
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What is overfitting?
Second estimation from the observations: accurate estimation
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What is overfitting?
Third estimation from the observations: overfitting
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What is overfitting?

Summary

A compromise must be made between accuracy and generalization ability.
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Basics

Suppose that we are given an algorithm:

T =
{
(xi , yi)

}
i −→ ΦT

where ΦT is a classification function: ΦT : x ∈ X → ΦT (x) ∈ {1, . . . ,K }.

B classifiers can be defined from B bootstrap samples using this algorithm:
∀ b = 1, . . . ,B, T b is a bootstrap sample of (xi , yi)i=1,...,n and Φb = ΦT

b
.

(Φb)b=1,...,B are aggregated using a majority vote scheme (an averaging in
the regression case):

∀ x ∈ X, Φn(x) := argmaxk=1,...,K

∣∣∣{b : Φb(x) = k }
∣∣∣

where |S| denotes the cardinal of a finite set S.
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Summary

(xi , yi)i=1,...,n

(xi , yi)i∈T 1 (xi , yi)i∈T b (xi , yi)i∈T B

Φ1 Φb ΦB

aggregation: Φn = most predicted class

prediction algorithm

subsample with replacement B times
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Why using bagging?

Bagging improves stability and limits the risk of overtraining.

Experiment: Using breastCancer dataset from mlbench1: 699
observations on 10 variables, 9 being ordered or nominal and describing a
tumor and 1 target class indicating if this tumor was malignant or benign.

1Data are coming from the UCI machine learning repository
http://archive.ics.uci.edu/ml
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To begin: bagging by hand...

for x =

Cl.thickness Cell.size Cell.shape Marg.adhesion
j g g d
Epith.c.size Bare.nuclei Bl.cromatin Normal.nucleoli
e j e g
Mitoses
b

and the following classification trees obtained from 3 bootstrap samples,
what is the prediction for x by bagging?
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individual predictions are: “malig-
nant”, “malignant”, “malignant” so
the final prediction is “malignant”
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Description of computational aspects

100 runs. For each run:

split the data into a training set (399 observations) and a test set (300
remaining observations);

train a classification tree on the training set. Using the test set,
calculate a test misclassification error by comparing the prediction
given by the trained tree with the true class;

generate 500 bootstrap samples from the training set and use them to
compute 500 classification trees. Use them to compute a bagging
prediction for the test sets and calculate a bagging misclassification
error by comparing the bagging prediction with the true class.

this results in...
100 test errors
100 bagging errors
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Results of the simulations
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Why do bagging predictors work?

References: [Breiman, 1996a, Breiman, 1996b].

For some instable predictors (such as classification trees for instance), a
small change in the training set can yield to a big change in the trained
tree due to overfitting (hence misclassification error obtained on the
training dataset is very optimistic)⇒ Bagging reduces this instability by
using an averaging procedure.
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Estimating the generalization ability
Several strategies can be used to estimate the generalization ability of an
algorithm:

split the data into a training/test set (∼ 67/33%): the model is
estimated with the training dataset and a test error is computed with
the remaining observations;

cross validation: split the data into L folds. For each fold, train a
model without the data included in the current fold and compute the
error with the data included in the fold: the averaging of these L errors
is the cross validation error;
out-of-bag error (see next slide).
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Out-of-bag observations, prediction and error
OOB (Out-Of Bags) error: error based on the observations not included in
the “bag”:

(xi , yi)

i ∈ T 1 i ∈ T b i < T B

Φ1 Φb

ΦB

OOB prediction: ΦB(xi)

used to train the model

prediction algorithm

for every i = 1, . . . , n, compute the OOB prediction:

ΦOOB(xi) = argmaxk=1,...,K

∣∣∣∣{b : Φb(xi) = k and xi < T
b
}∣∣∣∣

(xi is said to be “out-of-bag” for T b if xi < T
b )

OOB error is the misclassification rate of these estimates:

1
n

n∑
i=1

I{ΦOOB(xi),yi}
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Section 3

Application of bagging to CART: random forests
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General framework

Notations:

a random pair of variables (X ,Y): X ∈ Rp and Y ∈ R (regression) or
Y ∈ {1, . . . ,K } (classification)

a training set (xi , yi)i=1,...,n of i.i.d. observations of (X ,Y)

Purpose: train a function, Φn : Rp → {1, . . . ,K }, from (xi , yi)i capable of
predicting Y from X
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Overview: Advantages/Drawbacks

Random Forest: introduced by [Breiman, 2001]

Advantages

classification OR regression (i.e., Y can be a numeric variable or a
factor);

non parametric method (no prior assumption needed) and accurate;

can deal with a large number of input variables, either numeric
variables or factors;

can deal with small/large samples.

Drawbacks

black box model;

is not supported by strong mathematical results (consistency...) until
now.
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Basis for random forest: bagging of classification trees

Suppose: Y ∈ {1, . . . ,K } (classification problem) and (Φb)b=1,...,B are B
CART classifiers, Φb : Rp → {1, . . . ,K }, obtained from B bootstrap
samples of {(xi , yi)}i=1,...,n.

Basic bagging with classification trees
1: for b = 1, . . . ,B do
2: Construct a bootstrap sample Tb from {(xi , yi)}i=1,...,n

3: Train a classification tree from Tb , Φb

4: end for
5: Aggregate the classifiers with majority vote

Φn(x) := argmaxk=1,...,K

∣∣∣{b : Φb(x) = k }
∣∣∣

where |S| denotes the cardinal of a finite set S.
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Random forests
CART bagging with under-efficient trees to avoid overfitting

1 for every tree, each time a split is made, it is preceded by a random
choice of q variables among the p available X = (X1, X2, . . . , Xp).
The current node is then built based on these variables only: it is
defined as the split among the q variables that produces the two
subsets with the largest inter-class variance.
An advisable choice for q is

√
p for classification (and p/3 for

regression);

2 trees are fully developped (no pruning).
Hyperparameters

those of the CART algorithm (maximal depth, minimum size of a
node, minimum homogeneity of a node...);
those that are specific to the random forest: q, number of bootstrap
samples (B also called number of trees).

Random forest are not very sensitive to hyper-parameters setting: default
values for q should work in most cases.
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Additional tools
OOB (Out-Of Bags) error: error based on the OOB predictions.
Stabilization of OOB error is a good indication that there is enough
trees in the forest.

Importance of a variable to help interpretation: for a given variable X j

(j ∈ {1, . . . , p}), the importance of X j is the mean decrease in accuracy
obtained when the values of X j are randomized.

Importance is
estimated with OOB observations (see next slide for details)
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Importance estimation in random forests

OOB estimation for variable X j

1: for b = 1→ B (loop on trees) do
2: permute values for (x j

i )i: xi<T b return x(j,b)
i = (x1

i , . . . , x
(j,b)
i , . . . , xp

i ),

x(j,b)
i permuted values

3: predict Φb
(
x(j,b)

i

)
for all i : xi < T

b

4: end for
5: return OOB estimation of the importance

1
B

B∑
b=1

 1

|T b |

∑
xi<T b

I{Φb (xi)=yi} −
1

|T b |

∑
xi<T b

I{
Φb

(
x(j,b)

i

)
=yi

}
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Section 4

Introduction to parallel computing
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Very basic background on parallel computing

Purpose: Distributed or parallel computing seeks at distributing a
calculation on several cores (multi-core processors), on several
processors (multi-processor computers) or on clusters (composed of
several computers).

Constraint: communication between cores slows down the computation⇒
a strategy consists in breaking the calculation into independent parts so
that each processing unit executes its part independently from the others.
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Parallel computing with non-big data

Framework: the data (number of observations n) is small enough to allow
the processors to access them all and the calculation can be easily broken
into independent parts.

Example: bagging can easily be computed with a parallel strategy (it is
said to be embarrassingly parallel):

first step: each processing unit creates one (or several) bootstrap
sample(s) and learn a (or several) classifier(s) from it;

final step: a processing unit collect all results and combine them into
a single classifier with a majority vote law.
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Section 5

Standard approaches to scale up statistical methods
to Big Data
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Big Data?
Reference to the fast and recent increase of worldwide data storage:

Image taken from Wikipedia Commons, CC BY-SA 3.0, author: Myworkforwiki. exabyte ∼ 1018 bits

The 3V:

Volume: amount of data
Velocity: speed at which new data is generated
Variety: different types of data (text, images, videos, networks...)
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Big Data?
Standard sizes (in bits):

42 × 106: for the complete work of Shakespeare

6.4 × 109: capacity of human genome (2 bits/pb)

4.5 × 1016: capacity of HD space in Google server farm in 2004

2 × 1017: storage space of Megaupload when it was shut down (2012)

2.4 × 1018: storage space of facebook data warehouse in 2014, with
an increase of 0.6 × 1015 / day

1.2 × 1020 storage space of Google data warehouse in 2013

Source: https://en.wikipedia.org/wiki/Orders_of_magnitude_(data)

The 3V:

Volume: amount of data

Velocity: speed at which new data is generated

Variety: different types of data (text, images, videos, networks...)
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Why are Big Data seen as an opportunity?
economic opportunity: advertisements, recommendations, . . .
social opportunity: better job profiling
find new solutions to existing problems: open data websites with
challenges or publication of re-use https://www.data.gouv.fr,
https://ressources.data.sncf.com or
https://data.toulouse-metropole.fr
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When should we consider data as “big”?

We deal with Big Data when:

data are at google scale (rare)

data are big compared to our computing capacities

... and depending
on what we need to do with them

[R Core Team, 2017, Kane et al., 2013]

R is not well-suited for working with data structures larger than
about 10–20% of a computer’s RAM. Data exceeding 50% of
available RAM are essentially unusable because the overhead of
all but the simplest of calculations quickly consumes all available
RAM. Based on these guidelines, we consider a data set large if
it exceeds 20% of the RAM on a given machine and massive if it
exceeds 50%.
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Big Data and Statistics

Evolution of problems posed to statistics:

“small n, small p” problems

large dimensional problems: p > n or p � n

big data problems: n is very large

[Jordan, 2013]: scale statistical methods originally designed to deal with
small n and take advantage of parallel or distributed computing
environments to deal with large/big n while ensuring good properties
(consistency, good approximations...).
This requires a closer cooperation between statisticians and computer
scientists.
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Purpose of this presentation

What we will discuss
Standard approaches used to scale statistical methods with examples of
applications to learning methods discussed in previous presentations.

What we will not discuss
Practical implementations on various computing environments or
programs in which these approaches can be used.
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Organization of the talk
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Overview of BLB
[Kleiner et al., 2012, Kleiner et al., 2014]

method used to scale any bootstrap estimation

consistency result demonstrated for a bootstrap estimation

Here: we describe the approach in the simplified case of bagging
(illustration for random forest)

Framework: (Xi ,Yi)i=1,...,n a learning set. We want to define a predictor of
Y ∈ R from X given the learning set.
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Standard bagging

(Xi ,Yi)i=1,...,n

(Xi ,Yi)i∈τ1 (Xi ,Yi)i∈τb (Xi ,Yi)i∈τB

f̂1 f̂b f̂B

aggregation: f̂bootstrap = 1
B

∑B
b=1 f̂b

subsample with replacement B times

Advantage for Big Data: Bootstrap estimators can be learned in parallel.
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Problem with standard bagging

When n is big, the number of different observations in τb is ∼ 0.63n⇒ still
BIG!

First solution...: [Bickel et al., 1997] propose the “m-out-of-n” bootstrap:
bootstrap samples have size m with m � n
But: The quality of the estimator strongly depends on m!

Idea behind BLB
Use bootstrap samples having size n but with a very small number of
different observations in each of them.
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Presentation of BLB
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1 ,Y(1)
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m ,Y(1)

m )
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(B1)
m )

...
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m

n
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m

n
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m

n
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What is over-sampling and why is it working?
BLB steps:

1 create B1 samples (without replacement) of size m ∼ nγ (with
γ ∈ [0.5, 1]: for n = 106 and γ = 0.6, typical m is about 4000,
compared to 630 000 for standard bootstrap

2 for every subsample τb , repeat B2 times:
I over-sampling: affect weights (n1, . . . , nm) simulated asM

(
n, 1

m1m

)
to

observations in τb

I estimation step: train an estimator with weighted observations

3 aggregate by averaging

Remark: Final sample size (
∑m

i=1 ni) is equal to n (with replacement) as in
standard bootstrap samples.
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I over-sampling: affect weights (n1, . . . , nm) simulated asM

(
n, 1
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to

observations in τb
I estimation step: train an estimator with weighted observations (if the

learning algorithm allows a genuine processing of weights,
computational cost is low because of the small size of m)

3 aggregate by averaging
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Overview of Map Reduce

Map Reduce is a generic method to deal with massive datasets stored on
a distributed filesystem.

It has been developped by Google
TM

[Dean and Ghemawat, 2004] (see also
[Chamandy et al., 2012] for example of use at Google).
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Overview of Map Reduce

Data

Data 1

Data 2

Data 3

The data are broken into several bits.
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Overview of Map Reduce

Data

Data 1

Data 2

Data 3

Map

Map

Map

{(key, value)}

{(key, value)}

{(key, value)}

Each bit is processed through ONE map step and gives pairs {(key, value)}.
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Overview of Map Reduce

Data

Data 1

Data 2

Data 3

Map

Map

Map

{(key, value)}

{(key, value)}

{(key, value)}

Map jobs must be independent! Result: indexed data.
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Overview of Map Reduce

Data

Data 1

Data 2

Data 3

Map

Map

Map

{(key, value)}

{(key, value)}

{(key, value)}

Reduce
key = keyk

Reduce
key = key1

OUTPUT

Each key is processed through ONE reduce step to produce the output.
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Map Reduce in practice
(stupid) Case study: A huge number of sales identified by the shop and
the amount.

shop1,25000
shop2,12
shop2,1500
shop4,47
shop1,358
...

Question: Extract the total amount per shop.

Standard way (sequential)
I the data are read sequentially;
I a vector containing the values of the current sum for every shop is

updated at each line.

Map Reduce way (parallel)...
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Map Reduce for an aggregation framework

Data

Data 1

Data 2

Data 3

The data are broken into several bits.
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Map Reduce for an aggregation framework

Data

Data 1

Data 2

Data 3

Map

Map

Map

{(key, value)}

{(key, value)}

{(key, value)}

Map step: reads the line and outputs a pair key=shop and value=amount.
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Map Reduce for an aggregation framework

Data

Data 1

Data 2

Data 3

Map

Map

Map

{(key, value)}

{(key, value)}

{(key, value)}

Reduce
key = keyk

Reduce
key = key1

OUTPUT

Reduce step: for every key (i.e., shop), compute the sum of values.
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In practice, Hadoop framework
Apache Hadoop: open-source software framework for Big Data
programmed in Java. It contains:

a distributed file system (data seem to be accessed as if they were on
a single computer, though distributed on several storage units);

a map-reduce framework that takes advantage of data locality.

It is divided into: Name Nodes (typically two) that manage the file system
index and Data Nodes that contain a small portion of the data and
processing capabilities.

Data inside HDFS are not indexed (unlike SQL data for instance) but
stored as simple text files (e.g., comma separated)⇒ queries cannot be
performed simply.
Advantages/drawback: Hadoop is designed to realize tasks on a very
large number of computers (“data at Google scale”): Map tasks are made
locally to speed the processing. But this advantage is lost when
computation tasks are intensive on moderately large datasets (which fits in
a single computer).
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Hadoop & R

How will we be using it? We will be using a R interface for Hadoop,
composed of several packages (see

https://github.com/RevolutionAnalytics/RHadoop/wiki):

studied: rmr: Map Reduce framework (can be used as if Hadoop is
installed, even if it is not...);

not studied: rhdfs (to manage Hadoop data filesystem), rhbase (to
manage Hadoop HBase database), plyrmr (advanced data
processing functions with a plyr syntax).

Installing rmr without Hadoop:
http://tuxette.nathalievilla.org/?p=1455
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Application of MR to statistical learning methods

Learning problem: (X ,Y) st X ∈ X and Y ∈ R (regression) or
Y ∈ {1, . . . , K − 1} (classification)

... that has to be learned from the observations (Xi ,Yi)i=1,...,n

...with n very large.
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Standard approach for methods based on a sommation
over n [Chu et al., 2010]

When a classification method is based on a sommation of the form

n∑
i=1

F(Xi ,Yi)

it is easily addressed under the MR framework:

data are split between Q bits sent to each map job;

a map job computes a partial sommation
∑

i∈current bit F(Xi ,Yi);

the reducer then sums up intermediate results to get the final result.
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Example: linear model
Framework:

Y = βT X + ε

in which β is estimated by solving Σnβ̂ = Γn with Σn = 1
n
∑n

i=1 XiX>i and
Γn = 1

n
∑n

i=1 XiYi .

MR for linear model
1 Map step: ∀ r = 1, . . . , Q (chunk of data τr ), nr = Cardτr ,
σr

n =
∑

i∈τr XiX>i and γr
n =

∑
i∈τr XiYi (key is equal to 1 for every

output)

2 Reduce step (only one task): n =
∑Q

r=1 nr , Σn =
∑Q

r=1 σ
r
n

n , Γn =
∑Q

r=1 γ
r
n

n
and finally, β̂ = Σ−1

n Γn

Remark: This approach is strictly equivalent to estimating the linear model
from the whole dataset directly.
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A more tricky problem: penalized linear model

New framework: minimize penalized least squares

1
n

n∑
i=1

(
Yi − β

>Xi

)2
+ λ pen(β)

where, λ ∈ R+ and (usually)

pen(β) = ‖β‖22 =
∑p

j=1 β
2
j (ridge regularization [Tikhonov, 1963]);

pen(β) = ‖β‖1 =
∑p

j=1 |βj | (LASSO [Tibshirani, 1996])

The approach of simply summing the different quantities obtained in the
different Map tasks is not valid anymore as explained in [Chen and Xie, 2014]

⇒ solution involves weighting the different samples (τr)r=1, ...,Q to obtain
asymptotic equivalence when Q = nδ for 0 ≤ δ ≤ 1/2.
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MR implementation of random forest

A Map/Reduce implementation of random forest is included in Mahout
(Apache scalable machine learning library) which works as
[del Rio et al., 2014]:

data are split between Q bits sent to each Map job;

a Map job train a random forest with a small number of trees in it;

there is no Reduce step (the final forest is the combination of all trees
learned in the Map jobs).

Note that this implementation is not equivalent to the original random
forest algorithm because the forests are not built on bootstrap samples of
the original data set.
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Drawbacks of MR implementation of random forest

Locality of data can yield to biased random forests in the different Map
jobs⇒ the combined forest might have poor prediction performances

OOB error cannot be computed precisely because Map job are
independent. A proxy of this quantity is given by the average of OOB
errors obtained from the different Map tasks⇒ again this quantity
must be biased due to data locality.
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MR-RF in practice: case study [Genuer et al., 2017]

15,000,000 observations generated from: Y with
P(Y = 1) = P(Y = −1) = 0.5 and the conditional distribution of the
(X (j))j=1,...,7 given Y = y

with probability equal to 0.7, X (j) ∼ N(jy, 1) for j ∈ {1, 2, 3} and
X (j) ∼ N(0, 1) for j ∈ {4, 5, 6};

with probability equal to 0.3, X j ∼ N(0, 1) for j ∈ {1, 2, 3} and
X (j) ∼ N((j − 3)y, 1) for j ∈ {4, 5, 6};

X7 ∼ N(0, 1).

Comparison of subsampling, BLB, MR with well distributed data within
Map jobs and with Map jobs dealing with (mostly) data from one of the two
submodels.
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Discussion on MR-RF on a simulation study
Method Comp. time BDerrForest errForest errTest
sampling 10% 3 min 4.622e(-3) 4.381e(-3) 4.300e(-3)
sampling 1% 9 sec 4.586e(-3) 4.363e(-3) 4.400e(-3)
sampling 0.1% 1 sec 5.600e(-3) 4.714e(-3) 4.573e(-3)
sampling 0.01% 0.3 sec 4.666e(-3) 5.957e(-3) 5.753e(-3)
BLB-RF 5/20 1 min 4.138e(-3) 4.294e(-3) 4.267e(-3)
BLB-RF 10/10 3 min 4.138e(-3) 4.278e(-3) 4.267e(-3)
MR-RF 100/1 2 min 1.397e(-2) 4.235 e(-3) 4.006e(-3)
MR-RF 100/10 2 min 8.646e(-3) 4.155e(-3) 4.293e(-3)
MR-RF 10/10 6 min 8.501e(-3) 4.290e(-3) 4.253e(-3)
MR-RF 10/100 21 min 4.556e(-3) 4.249e(-3) 4.260e(-3)
MR x-biases 100/1 3 min 3.504e(-3) 1.010e(-1) 1.006e(-1)
MR x-biases 100/10 3 min 2.082e(-3) 1.010e(-1) 1.008e(-1)

all methods provide satisfactory results except MR when locality
biases are introduced
average OOB error over the Map forests can be a bad approximation
of true OOB error (sometimes optimistic, sometimes pessimistic)
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Another MR implementation of random forest
... using Poisson bootstrap [Chamandy et al., 2012] which is based on the fact
that (for large n):

Binom
(
n,

1
n

)
' Poisson(1)

1 Map step ∀ r = 1, . . . , Q (chunk of data τr ). ∀ i ∈ τr , generate B
random i.i.d. random variables from Poisson(1) nb

i (b = 1, . . . , B).

Output: (key, value) are (b , (i, nb
i )) for all pairs (i, b) st nb

i , 0
(indices i st nb

i , 0 are in bootstrap sample number b nb
i times);

2 Reduce step proceeds bootstrap sample number b: a tree is built
from indices i st nb

i , 0 repeated nb
i times.

Output: A tree... All trees are collected in a forest.

Closer to using RF directly on the entire dataset But: every Reduce job
should deal with approximately 0.63 × n different observations... (only the
bootstrap part is simplified)
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random i.i.d. random variables from Poisson(1) nb

i (b = 1, . . . , B).
Output: (key, value) are (b , (i, nb

i )) for all pairs (i, b) st nb
i , 0

(indices i st nb
i , 0 are in bootstrap sample number b nb

i times);

2 Reduce step proceeds bootstrap sample number b: a tree is built
from indices i st nb

i , 0 repeated nb
i times.

Output: A tree... All trees are collected in a forest.

Closer to using RF directly on the entire dataset But: every Reduce job
should deal with approximately 0.63 × n different observations... (only the
bootstrap part is simplified)
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Online learning framework
Data stream: Observations (Xi ,Yi)i=1,...,n have been used to obtain a
predictor f̂n
New data arrive (Xi ,Yi)i=n+1,...,n+m: How to obtain a predictor from the
entire dataset (Xi ,Yi)i=1,...,n+m?

Naive approach: re-train a model from (Xi ,Yi)i=1,...,n+m

More interesting approach: update f̂n with the new information
(Xi ,Yi)i=n+1,...,n+m

Why is it interesting?

computational gain if the update has a small computational cost (it
can even be interesting to deal directly with big data which do not
arrive in stream)

storage gain

Additional remark: Restricted to stationnary problems (as opposed to
“concept drift”
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Framework of online bagging

f̂n =
1
B

B∑
b=1

f̂b
n

in which

f̂b
n has been built from a bootstrap sample in {1, . . . , n}

we know how to update f̂b
n with new data online

Question: Can we update the bootstrap samples online when new data
(Xi ,Yi)i=n+1,...,n+m arrive?
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Online bootstrap using Poisson bootstrap

1 generate weights for every bootstrap samples and every new
observation: nb

i ∼ Poisson(1) for i = n + 1, . . . , n + m and
b = 1, . . . , B

2 update f̂b
n with the observations Xi such that nb

i , 0, each repeated
nb

i times

3 update the predictor:

f̂n+m =
1
B

B∑
b=1

f̂b
n+m.
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Application: online PRF
In Purely Random Forest, the trees are generated independently from the
data. It is described by:

∀ b = 1, . . . , B, f̂b
n : PR tree for bootstrap sample number b

∀ b = 1, . . . , B, for all terminal leaf l in f̂b
n , obsb ,l

n is the number of
observations in (Xi)i=1, ..., n which falls in leaf l and valb ,ln is the average
Y for these observations (regression framework)

Online update with Poisson bootstrap:

∀ b = 1, . . . , B, ∀ i ∈ {n + 1, . . . , n + m} st nb
i , 0 and for the terminal

leaf l of Xi :

valb ,li =
valb ,li−1 × obsb ,l

i−1 + nb
i × Yi

obsb ,l
i−1 + nb

i

(online update of the mean...)

obsb ,l
i = obsb ,l

i−1 + nb
i
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Have you survived to Big Data?
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Section 6

References
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Thank you for your attention...

... questions?
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