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> Atypical transcriptomic experiment
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Data analysis
(exploratory analysis, normalization,
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) Steps in RNAseq data analysis

[ Design of experiment ]

v

Exploratory analysis
(identify outliers, filter genes, clean

data...)
[ Normalization
Network analysis
Differential analysis (co-expression,
regularory)

/\

Exploratory analysis
Enrichment analysis (clustering, relations
with other 'omics...)
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Y Part I: Experimental design

Design of experiment

v

Exploratory analysis
(identify outliers, filter genes, clean
data...)

¥

Normalization

/

[ Network analysis

Differential analysis (co-expression,

/\ regmarof)’)

Exploratory analysis
Enrichment analysis (clustering, relations
with other 'omics...)
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) Confounded effects: a simple example

Basic experiment: find differences between control/treated plants

¥ ¥

control group plant  treated group plant
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) Confounded effects: a simple example

Basic experiment: find differences between control/treated plants

¥ ¥

control group plant  treated group plant

A bad experimental design: grow all control group plants in one field and grow all
treated group plants in another field

Field 1 Field 2
Fyrl.Y¥| BT
Yoy Py [YoF ey
F ¥ [FY¥vy [EEENESE
v ¥y Y Y\?*{’\I’\fﬁ’
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differences due to the field / the treatment can not be distinguished = confounded
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) Confounded effects: a simple example

Basic experiment: find differences between control/treated plants

NF

control group plant  treated group plant

A good experimental design: grow half control group plants (chosen at random) and
half treated group plants in one field (and the rest in the other field)

g

Field 1 Field 2

Py F| ¥ ¥ F P ¥ ¥
Yoy |Y ¥ ¥ ¥ ¥ ¥r
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differences due to the field / the treatment can be estimated separately
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) Confounded effects: a simple example

Basic experiment: find differences between control/treated plants

¥ ¥

control group plant  treated group plant

In summary, what is a good experimental design?

Experimental design are usually not as simple as this example: they can include
multiple experimental factors (day of experiment, flow cell, ...) and multiple covariates
(sex, parents, ...).

= The experimental design must be carefully thought before starting the experiment
and confounded effects must be searched for in a systematic manner.
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Y Effect & Variation

2 conditions, 2 genes whose expression
distribution is:

> first gene: different median levels

. ’—;—l - between the two groups but large
o+ ‘ variance: differences may be non
a- significant

auab 1s1y

c
k=l
g
g
°, o > second gene: different median levels
o,
g § between the two groups but very small

0- —_— . .

‘g; variance: differences may be
“ significant
COH‘UO\ tree;ted
group
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) Source of variation in RNA-seq experiments

1. at the top layer: biological variations (i.e., individual differences
rrr due to e.g., environmental or genetic factor
\F/\f\y -g-, genetic factors)
JOvey
/\ ' 2. at the middle layer: technical variations (library preparation
effect)

3. at the bottom layer: technical variations (lane and cell flow
effects)
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Source of variation in RNA-seq experiments

1. at the top layer: biological variations (i.e., individual differences
Yrr due to e.g., environmental or genetic factors)
¥ ¥ ¥

2. at the middle layer: technical variations (library preparation
effect)

3. at the bottom layer: technical variations (lane and cell flow
effects)

lane effect < cell flow effect < library preparation effect <« biological effect = 2 x 3
biological replicates at least [Liu et al., 2014]
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Y Part Il: Exploratory analysis

[ Design of experiment ]

!

Exploratory analysis
(identify outliers, filter genes, clean
data...)

¥

[ Normalization ]

[ Network analysis

Differential analysis (co-expression,

/\ regularory)

Exploratory analysis
Enrichment analysis (clustering, relations
with other 'omics...)
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> Some features of RNAseq data

What must be taken into account?

> discrete, non-negative data (total number of aligned reads)
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> Some features of RNAseq data

What must be taken into account?
> discrete, non-negative data (total number of aligned reads)

> skewed data

count distribution 'wt_1' count distribution - 'wt_1'
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> Some features of RNAseq data

What must be taken into account?
> discrete, non-negative data (total number of aligned reads)
> skewed data
> overdispersion (variance > mean)

Variance versus mean in counts
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Y Dataset used in the examples

Dataset provided by courtesy of the transcriptomic platform of IPS2
Three files:

> D1-counts.txt contains the raw counts of the experiment (13 columns: the first
one contains the gene names, the others correspond to 12 different samples;
gene names have been shuffled);

> Dl-genesLength.txt contains information about gene lengths;

> Dl-targets.txt contains information about the sample and the experimental
design.

#¢  labels group replicat
1 wt_1  wt repbiol
## 2 wt_ 2wt repbio2
## 3 wt 3  wt repbio3
## 4 mutl 1 mutl repbiol
## 5 mutl 2 mutl repbio2
## 6 mutl 3 mutl repbio3
## 7 mut2_1 mut2 repbiol
## 8 mut2_2 mut2 repbio2
# 9 mut2_3 mut2 repbio3
## 10 mut3_1 mut3 repbiol
## 11 mut3_2 mut3 repbio2

INRAZ ## 12 nut3_3 mut3 repbio3
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Y Dataset used in the examples

These text files are loaded with:

raw_counts <- read.table("Dl-counts.txt",
row.names = 1)
raw_counts <- as.matrix(raw_counts)

header

design <- read.table("Dl-targets.txt", header =
stringsAsFactors = FALSE)

gene_lengths <- scan("Dl-genesLength.txt")
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Y Count distribution

The count distribution (i.e., the number of times a given count is obtained in the data)
can be visualized with histograms (boxplots or violin plots can also be used):

count distribution 'wt_1' count distribution - 'wt_1'
5e-04 - 03

4004+

3e-04-

density

2e-04 -

1e-04 -

0e+00 -
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logz(counts +1)

counts

This distribution is highly skewed and it is better visualized using a logy transformation
before it is displayed.
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Y Count distribution

The count distribution (i.e., the number of times a given count is obtained in the data)
can be visualized with histograms (boxplots or violin plots can also be used):

count distribution 'wt_1' count distribution - 'wt_1'
5e-04 -

4004+

3e-04-

density
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1e-04 -

0e+00 -
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logz(counts +1)

counts

This distribution is highly skewed and it is better visualized using a logy transformation

before it is displayed.
The library size is the sum of all counts in a given sample.
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Y Count distribution between samples

The count distribution between different samples can be compared with parallel
boxplots or violin plots:

count distributions

o

=

S

counts

o

mut1_1
muti_2
mut1_3
mut2_1
mut2_2
mut2_3
mut3_3

It is expected that, within a given condition (group), the count distributions are similar.

The same is often also expected between conditions.
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) Check reproducibility between samples

MA plots can be used to visualize reproducibility between samples of an experiment
(and thus check if normalization is needed). They plot the log-fold change (M-values)
against the log-average (A-values):

M-values: log of ratio between counts A-values: average log counts between two
between two samples: samples:
logo(Kyi) + loga(Kyjr
My = loga(Kg;) — loga(Kyy) Ag = g2(Kg) 5 g2(Kyr)

where Kg; stands for the counts for gene g in sample j.

INRAZ

Biostatistique RNA-seq p. 16
Toulouse, 16-17 mai 2024 / NV2



) Check reproducibility between samples

MA plots can be used to visualize reproducibility between samples of an experiment
(and thus check if normalization is needed). They plot the log-fold change (M-values)
against the log-average (A-values):
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Y» Check similarity between samples

Similarities between samples can be visualized with a HAC and a heatmap:
» perform hierarchical ascending classification (HAC) using Euclidean distance

. 2
between samples: 6(j,j') = X4 (Iogz(ng) - Iogz(ng/))
> visualize the strength of the similarity with heatmap.

Color key
T
0 8388

mmmmmmmmmmmm
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Y Search for the main structures in the data: PCA

PCA (on log» counts) can be used to project data into a small dimensional space and
search for unexpected experimental effects in the data.

Plotindiv

explvar

PC2: 1%

]
PC1: 22% expl. var

(MDS is equivalent to PCA when used with the standard Euclidean distance)
Remark: In DESeq, the function plotPCA performs PCA on the top genes with the
highest variance.
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Y Ouitline

Normalization
Raw data filtering
Interpreting read counts
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Y Raw data filtering

Filtering consists in removing genes with low expression. Different strategies can be
used:
» [Sultan et al., 2008]: filter out genes with a total read count smaller than a given
threshold;
> [Bottomly et al., 2011]: filter out genes with zero count in an experimental
condition;
> [Robinson and Oshlack, 2010]: filter out genes such that the number of samples
with a CPM value (for this gene) smaller than a given threshold is larger than the
smallest number of samples in a condition. With CPM: Count Per Million (i.e., raw
count divived by library size, this strategy takes into account differences in library
sizes).

INRAZ
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Y Raw data filtering

Filtering consists in removing genes with low expression. Different strategies can be
used:
> [Sultan et al., 2008]: filter out genes with a total read count smaller than a given
threshold;
> [Bottomly et al., 2011]: filter out genes with zero count in an experimental
condition;
> [Robinson and Oshlack, 2010]: filter out genes such that the number of samples
with a CPM value (for this gene) smaller than a given threshold is larger than the
smallest number of samples in a condition. With CPM: Count Per Million (i.e., raw
count divived by library size, this strategy takes into account differences in library
sizes).
More sophisticated filtering
To account for the fact that lowly expressed genes are almost never found differentially
expressed, a more sophisticated filtering can be performed.
INRAZ
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Y Part lll: Normalization

[ Design of experiment ]

v

Exploratory analysis
(identify outliers, filter genes, clean
data...)

Normalization

Differential analysis (co-expression,

/\ regularory)

Exploratory analysis
Enrichment analysis (clustering, relations
with other 'omics...)

[ Network analysis
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Y Purpose of normalization

> identify and correct technical biases (due to sequencing process) to make counts
comparable

> types of normalization: within sample normalization and between sample
normalization

Biostatistique RNA-seq
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Y Within sample normalization

Example: (read counts)

| sample 1 | sample 2 | sample 3
gene A 752 615 1203
gene B 1507 1225 2455

counts for gene B are twice larger than counts for gene A because:
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» Within sample normalization
Example: (read counts)

| sample 1 | sample 2 | sample 3
gene A

752 615 1203
gene B 1507 1225 2455

counts for gene B are twice larger than counts for gene A because:

> gene B is expressed with a number of transcripts twice larger than gene A

i

gene B
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» Within sample normalization

Example: (read counts)

| sample 1 | sample 2 | sample 3
gene A 752 615 1203
gene B 1507 1225 2455

counts for gene B are twice larger than counts for gene A because:

> both genes are expressed with the same number of transcripts but gene B is twice
longer than gene A

Toulouse, 16-17 mai 2024 / NV2



Y Within sample normalization

> Purpose of within sample comparison: enabling comparisons of genes from a
same sample

> Sources of variability: gene length, sequence composition (GC content)

These differences need not to be corrected for a differential analysis and are not really
relevant for data interpretation.
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Y Between sample normalization

Example: (read counts)

| sample 1 | sample 2 | sample 3
gene A 752 615 1203
gene B 1507 1225 2455

counts in sample 3 are much larger than counts in sample 2 because:
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Y Between sample normalization
Example: (read counts)

| sample 1 | sample 2 | sample 3
gene A

752 615 1203
gene B 1507 1225 2455

counts in sample 3 are much larger than counts in sample 2 because:

> gene A is more expressed in sample 3 than in sample 2

«Q
D
>
D
>
z
(7]
QO
3
o
D
N

gene Ain sample 3
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» Between sample normalization
Example: (read counts)

| sample 1 | sample 2 | sample 3
gene A

752 615 1203
gene B 1507 1225 2455

counts in sample 3 are much larger than counts in sample 2 because:

> gene A is expressed similarly in the two samples but sequencing depth is larger in
sample 3 than in sample 2 (i.e., differences in library sizes)

Q
@
>
)

>

=
n
O
3

°

)

no

gene A in sample 3
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Y Between sample normalization

> Purpose of between sample comparison: enabling comparisons of a gene in
different samples

» Sources of variability: library size, ...

These differences must be corrected for a differential analysis and for data
interpretation.
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) Principles for sequencing depth normalization

Basics
1. choose an appropriate baseline for each sample
2. for a given gene, compare counts relative to the baseline rather than raw counts
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) Principles for sequencing depth normalization

Basics
1. choose an appropriate baseline for each sample
2. for a given gene, compare counts relative to the baseline rather than raw counts

In practice: Raw counts correspond to different sequencing depths

control treated

Sl <] o] o

o
s 08230070 70 NG
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) Principles for sequencing depth normalization
Basics
1. choose an appropriate baseline for each sample

2. for a given gene, compare counts relative to the baseline rather than raw counts

In practice: Acor —~ T 7

T imple
control treated

Sl <] o] o

-
s 082130170 70 NG
e[S 1 S YA
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) Principles for sequencing depth normalization

Basics
1. choose an appropriate baseline for each sample

2. for a given gene, compare counts relative to the baseline rather than raw counts

In practice: Every counts is multiplied by the correction factor corresponding to its
sample

Gene 3 PANENN S 140| 88| 70
O PO 14| 07| o8

cenes [1012 [2576 456 % IEDIEREE] "
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) Principles for sequencing depth normalization
Basics

1. choose an appropriate baseline for each sample

2. for a given gene, compare counts relative to the baseline rather than raw counts
Consequences: Library sizes for normalized counts are roughly equal.

control treated

Al IR ss| o] o
cercz [0 [Ta2os |14 IREIENEIINE]

Gene 3

Sl [ ss] o)
T 2] o] o R
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) Principles for sequencing depth normalization

Definition
If Ky is the raw count for gene g in sample j then, the normalized counts is defined as:

= Kgi
Ky = 10°
9 Sj X Dj %

in which: D; = ¥4 Ky is the library size of sample j, s; is the correction factor of the
library size for sample j and thus C; = ;;%61
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Y Distribution adjustment

> Total read count adjustment [Mortazavi et al., 2008]
— K,
si=1  and thus: Ky = F?’ x 108

j
(Counts Per Million).

raw counts normalized counts

- edgeR:
o Samples
g kN cpm(. ..,

normalized.lib.sizes=FALSE)

250 500 750 1000 0 250 500 750 1000

rank(mean) gene expression
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Y Distribution adjustment

> Total read count adjustment [Mortazavi et al., 2008]
> (Upper) Quartile normalization [Bullard et al., 2010]

(p)
Qj

S§j= ————
LN, QP

)

N: number of samples, Qj(p : quantile in sample j

loga(count + 1)

edgeR:

= "upperquartile",
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) Method using gene lengths (intra & inter sample
normalization)

RPKM: Reads Per Kilobase per Million mapped Reads

Assumptions: read counts are proportional to expression level, transcript length and
sequencing depth

DiLg
S = ==
103 x 108
in which Lg is gene length (bp).
edgeR:
rpkm(..., gene.length = ...)

Unbiaised estimation of number of reads but affect variability
[Oshlack and Wakefield, 2009].
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Y Relative Log Expression (RLE)

Method:
1. compute a pseudo-reference sample: geometric mean across samples

N 1/N
Ry = l_l Kgj
j=1

(geometric mean is less sensitive to extreme values than standard mean)

=
: Samples
€ 10-
= © Sample 1
o
KA - Sample 2
=
S
k=]
5-
0-
| | ) | J
0 250 500 750 1000
INRAZ ©), rank(mean) gene expression
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Y Relative Log Expression (RLE)

Method:
1. compute a pseudo-reference sample
2. center samples compared to the reference

K. N 1/N
v g . — .
Ky=g- with Ry= [ [k
g j=1
2
E_ Samples
EJ’ « Sample 1
E 2= + Sample 2
E
1
0 250 500 750 1000
INRAZ rank(mean) gene expression
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Y Relative Log Expression (RLE)

Method:
1. compute a pseudo-reference sample
2. center samples compared to the reference
3. compute normalization factor: median of centered counts over the genes

Sj

g = median g | factors multiply to 1: sj = -
9 { } exp (% 2, Iog(s;))

with
§a- K . — @
GE)_ Samples g] R
é + Sample 1
ng + Sample 2 and
g 5 N 1N
1+ v 5:., R .
SRR Ro=|| | Ka
o INRAZ o o -

Biostatirtinean) bk egpression
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Y Relative Log Expression (RLE)
Method:

1. compute a pseudo-reference sample
2. center samples compared to the reference
3. compute normalization factor: median of centered counts over the genes

.
@

## with edgeR
calcNormFactors (...,
B e - method="RLE")

- sample 2

10-

log,(count + 1)

## with DESeq
estimateSizeFactors(...)

250 500 750 1000

rank(mean) gene expression
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Y Trimmed Mean of M-values (TMM)

Assumptions behind the method

> the total read count strongly depends on a few highly expressed genes
> most genes are not differentially expressed
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Y» Trimmed Mean of M-values (TMM)

Assumptions behind the method
> the total read count strongly depends on a few highly expressed genes
> most genes are not differentially expressed

= remove extreme data for fold-changed (M) and average intensity (A)

(I’f)—logz(};j) lo 2(29:) Agljsr) = ;[Iogz(g/)+log2(—

select as a reference sample, the
sample r with the upper quartile E
closest to the average upper quartile T
M- vs A-values

INRAZ
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» Trimmed Mean of M-values (TMM)
Assumptions behind the method
> the total read count strongly depends on a few highly expressed genes
> most genes are not differentially expressed

= remove extreme data for fold-changed (M) and average intensity (A)

M@0

Trim 30% on M-values

AG.r)

Biostatistique RNA seq
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» Trimmed Mean of M-values (TMM)
Assumptions behind the method
> the total read count strongly depends on a few highly expressed genes
> most genes are not differentially expressed
= remove extreme data for fold-changed (M) and average intensity (A)

ol ef5) w00 (5] 5]

© 30%of Mg
* 5% of Ag

M@0

Trim 5% on A-values

AG.r)
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Y Trimmed Mean of M-values (TMM)

Assumptions behind the method

> the total read count strongly depends on a few highly expressed genes

> most genes are not differentially expressed

Trimmed
values
* None

* 309% of Mg
© 5%of Ag

Al
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On remaining data, compute the weighted
mean of M-values:
“Z_ dwg(j, r)Mg(j. )
. g:not trimme
TMM(j, r) = .
G0 > 0.0
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. . Di-Ky; = D,—K
with wy(j, r) = [ 52 M)
g(] ) ( DRy + D/ Ryr




Y» Trimmed Mean of M-values (TMM)

Assumptions behind the method

> the total read count strongly depends on a few highly expressed genes
> most genes are not differentially expressed

Correction factors:

5

& = 2™MUN  factors multiply to 1: s = — -~
exp (% 2N, log(3))

calcNormFactors (..., method="TMM")
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) Comparison of the different approaches

Purpose of the comparison:
> finding the “best” method for all cases is not a realistic purpose

> find an approach which is robust enough to provide relevant results in all cases

> Method: comparison based on several criteria to select a method which is valid for
multiple objectives

Toulouse, 16-17 mai 2024 / NV2



) Comparison of the different approaches

Effect on count distribution:

207

RPKM and TC are very similar to raw data.
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) Comparison of the different approaches
Effect on differential analysis (DESeq v. 1.6):

Equivalent library sizes / Presence of majority genes

0.20
I |

False-positive rate
oin
I

0.00

T T T
DESe Thild Fa RPKM RawvCourt

] ” j'"|'|l|'|mﬁl"liﬂlﬂl’l’iiﬂll """""""""""""""" Ml

Height
0 02 04 06
L I I I
FQ “
Med
wjj
3
Rawcnum“
TC:’—‘
RPKM
P
00 02 04 08 08 10
I

T
r T T T T T
T ua Med THM Fa

DESeq RPHM RawCourt

Inflated FPR for all methods except for TMM and DESeq (RLE).
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) Comparison of the different approaches

Conclusion: Differences appear based on data characteristics

Method Distribution Intra-Variance Housekeeping Clustering False-positive rate

TC = + + = =
UuQ ++ ++ + ++ -
Med ++ ++ - ++ -
DESeq ++ ++ ++ ++ ++
TMM ++ ++ ++ ++ ++
FQ ++ - + ++ -
RPKM = + + = =

TMM and DESeq (RLE) are performant in a differential analysis context.
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Y Ouitline

Differential Expression analysis
Hypothesis testing and correction for multiple tests
Differential expression analysis for RNAseq data
Interpreting and improving the analysis
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) Part |V: Differential expression analysis

[ Design of experiment ]

v

Exploratory analysis
(identify outliers, filter genes, clean
data...)

[ Normalization

Network analysis

Differential analysis (co-expression,

A regularory)

Exploratory analysis
Enrichment analysis (clustering, relations
with other 'omics...)
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Y Different steps in hypothesis testing

1. formulate an hypothesis Hp:
Ho: the average count for gene g in the control samples is the
same that the average count in the treated samples
which is tested against an alternative Hy: the average count for gene g in the
control samples is different from the average count in the treated samples

25.0 - @
[

0 22.5
€ o
=]
s}
o
o condition
£20.0 -
S o control
3 L4 ® treated
z (]
2175
e}
o

15.0

! '
control treated
condition
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Y Different steps in hypothesis testing

1. formulate an hypothesis Hp:
Ho: the average count for gene g in the control samples is the
same that the average count in the treated samples
2. from observations, compute a test statistics (e.g., the mean in the two samples)

25.0 -

N
N
o

condition
@ control
©® treated

o
8
o

@ o s s

observed gene counts
i~
o

a
o

1 i
control treated
condition
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Y Different steps in hypothesis testing

1. formulate an hypothesis Hp:
Ho: the average count for gene g in the control samples is the
same that the average count in the treated samples
2. from observations, compute a test statistics (e.g., the mean in the two samples)
3. find the theoretical distribution of the test statistics under Hg

theoretical distribution under HO

ssssssssssssss
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Y Different steps in hypothesis testing

1. formulate an hypothesis Hp:
Ho: the average count for gene g in the control samples is the
same that the average count in the treated samples
2. from observations, compute a test statistics (e.g., the mean in the two samples)
find the theoretical distribution of the test statistics under Hg

4. deduce the probability that the observations occur under Hg: this is called the
p-value

w

Probability to observe 2.3 (or larger) is ~1.1%

ssssssssssssss
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>

1.

w

Different steps in hypothesis testing

formulate an hypothesis Hp:

Ho: the average count for gene g in the control samples is the

same that the average count in the treated samples

from observations, compute a test statistics (e.g., the mean in the two samples)
find the theoretical distribution of the test statistics under Hg
deduce the probability that the observations occur under Hg: this is called the
p-value
conclude: if the p-value is low (usually below @ = 5% as a convention), Hg is
unlikely: we say that “Hg is rejected”.
We have that: @ = Py (Ho is rejected).
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250
o225
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Probabily to observe 0.1 (or larger) is ~46%

st satstcs

Do not reject Hg
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) Summary of the possible decisions

observed gene counts

Probabily t

condition
® conral
[ ] ® veated

control rested

condition

t0 observe 2.3 (or larger)is ~1.1%

test tasics

Reject Hy
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Y Types of errors in tests

Reality
Hg is true Hy is false
) Correct decision Type Il error
< | Do not reject Hy
= © (True Negative) | ® (False Negative)
©
Q Type | error Correct decision
Q Reject Hg P
® (False Positive) | © (True Positive)
P(Type | error) = « (risk)
P(Type Il error) = 1 — B (3: power)
INRAZ @58
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) Why performing a large number of tests might be a problem?
Framework: Suppose you are performing G tests at level a.

P(at least one FP if Hg is always true) = 1 — (1 — )€
Ex: for @ = 5% and G = 20, P(at least one FP if Hp is always true) ~ 64%!!!
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Probability

) Why performing a large number of tests might be a problem?

Framework: Suppose you are performing G tests at level a.

P(at least one FP if Hy is always true) = 1 — (1 — )¢

Ex: for @ = 5% and G = 20, P(at least one FP if Hp is always true) ~ 64%!!!

Probability to have at least one false positive versus the number of tests performed
when Hy is true for all G tests

1.00-

i) /—_-
5
&
s
s

0.25-

0 2 50
Nurpbecaf tasts
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For more than 75 tests and if Hy is always

true, the probability to have at least one
false positive is very close to 100%)!



Y Notations for multiple tests

Number of decisions for G independent tests:

True null False null Total
hypotheses | hypotheses
Not rejected Go—-U G-V G-R
Rejected u % R
Total Go G4
INRAG (O
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Y Notations for multiple tests

Number of decisions for G independent tests:

True null False null Total
hypotheses | hypotheses
Not rejected Go-U G-V G-R
Rejected u % R
Total Go G4

Instead of the risk «, control:

» familywise error rate (FWER): FWER = P(U > 0) (i.e., probability to have at least
one false positive decision)

» false discovery rate (FDR): FDR = E(Q) with

INRAZ
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Y Adjusted p-values

Settings: p-values pq, ..., pg (€.9., corresponding to G tests on G different genes)
Adjusted p-values
adjusted p-values are py, ..., Ppg such that

Rejecting tests such that py<a &= P(U>0)<a or E(Q)<a
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Y Adjusted p-values

Settings: p-values pq, ..., pg (€.9., corresponding to G tests on G different genes)
Adjusted p-values
adjusted p-values are py, ..., Ppg such that

Rejecting tests such that py<a &= P(U>0)<a or E(Q)<a

Computing p-values
1. order the p-values p(1) < p2) < ... < p(G)
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Y Adjusted p-values

Settings: p-values pq, ..., pg (€.9., corresponding to G tests on G different genes)
Adjusted p-values
adjusted p-values are py, ..., Ppg such that

Rejecting tests such that py<a &= P(U>0)<a or E(Q)<a

Computing p-values
1. order the p-values p(1) < p2) < ... < p(G)
2. compute Pg) = agpP(g)

> with Bonferroni method: a3 = G (FWER)
> with Benjamini & Hochberg method: a; = G/g (FDR)
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Y Adjusted p-values

Settings: p-values pq, ..., pg (€.9., corresponding to G tests on G different genes)
Adjusted p-values
adjusted p-values are py, ..., Ppg such that

Rejecting tests such that pg <o < PU>0)<a or E(Q) <«

Computing p-values
1. order the p-values p(1) < p2) < ... < p(G)

2. compute Pg) = agpP(g)
> with Bonferroni method: a3 = G (FWER)
> with Benjamini & Hochberg method: a; = G/g (FDR)

3. if adjusted p-values py, are larger than 1, correct pg) < min{pgy), 1}

Toulouse, 16-17 mai 2024 / NV2



) Adjusting p-values in practice

> compute adjusted p-values (Bonferroni or BH procedures for instance)

> select all genes for which this adjusted p-values is below 5% (for instance)

> this is equivalent to controlling either the probability to have at least one FP
(FWER) or the average proportion of FP (FDR)

> head(res_et$table)

Medtroe01s0010.
Medtro001s0200.
Medtr0001s0260.
Medtro001s0360.
Medtro001s0490.
MeFtrOOGZSO(MB.

HR RN HRHR N

PwRrORN

risk: 5%
TlogFC TlogCPM PValue
6781504 -1.431355 5.150664e-01
8555270 -1.539448 1.000000e+00
2649219 3.819200 2.566312e-01
8653601 -1.538425 1.000000e+00
5161357 -1.241010 1.479207e-01
1389465 3.991809 5.164744e-13

INRAZ

Biostatistique RNA-seq

Toulouse, 16-17 mai 2024 / NV2

> head(res_et$table)

Medtr000150010.
Medtr000150200.
Medtre00150260.
Medtr000150360.
Medtre00150490.
Medtr000250040.

1
1
1
1
1
1

TogFC

-2.6781504 -
1.8555270 -

0.2649219
1.8653601
3.5161357
4.1389465

TogCPH
431355
539448
819200
538425
241010
991809

PValue
5.150664e-01
1.000000e+00
2.566312e-01
1.000000e+00
1.479207e-01
5.164744e-13

FDR: 5%
padj

000000e+00
000000e+00
088192e-01
000000e+00
672582e-01

.611932e-10

> head(res_etStable)

Medtr0001s0010.
Medtree01s0200.
Medtree01s0260.
Medtree01s0360.
Medtroe01s0490.

1
1
1
1

1

logFC

-2.6781504

1.8555270
0.2649219
1.8653601
3.5161357

Medtr0002s0040.1 4.1389465

TogCPM

-1.431355
-1.539448

3.819200

-1.538425
-1.241010

3.991809

PValue
5.150664e-01
1.000000e+00
2.566312e-01
1.000000e+60
1.479207e-01
5.164744e-13

FWER: 5%

padj
1.00000e+00
1.00000¢+00
1.00000¢+00
1.
1
1

00000e+00

.00000e+00
-44179%e-08



) Fisher’s exact test for contingency tables

After normalization, one may build a contingency table like this one:

treated control Total

othergenes Na-nga Ng-ng N-ng
Total Na Ng N

Question: is the number of reads of gene g in the treated sample significatively
different than in the control sample?

INRAZ
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) Fisher’s exact test for contingency tables

After normalization, one may build a contingency table like this one:

treated control Total

othergenes Na-nga Ng-ng N-ng
Total Na Ng N

Question: is the number of reads of gene g in the treated sample significatively
different than in the control sample?
Method
Direct computation of the probability to obtain such a contingency table (or a “more
extreme” contingency table) with:

> independency between the two columns of the contingency tables;

> the same marginals (“Total”).

INRAZ
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» Example of results obtained with the Fisher test

log, fold change

10
mean log, expression
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Genes declared significantly differentially expressed are in pink:

Main remark: more conservative
for genes with a low expression



» Example of results obtained with the Fisher test

Genes declared significantly differentially expressed are in pink:

Main remark: more conservative
for genes with a low expression

log, fold change

10
mean log, expression

Limitation of Fisher test

Highly expressed genes have a very large variance! As Fisher test does not estimate
variance, it tends to detect false positives among highly expressed genes = do not
use it!
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) Basic principles of tests for count data: 2 conditions and
replicates

Notations: for gene g, K;1, s Kgp, (condition 1) and K§1, .., K&y, (condition 2)

> choose an appropriate distribution to model count data (discrete data,
overdispersion)

> estimate its parameters for both conditions

» conclude by computing p-value
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) Basic principles of tests for count data: 2 conditions and
replicates

Notations: for gene g, K;1, .., Kgn, (condition 1) and K§1, .., K&y, (condition 2)
» choose an appropriate distribution to model count data (discrete data,
overdispersion)
ng ~ NB(S;(/lgk’fﬁg)
in which:
> s}‘ is library correction factor of sample j in condition k
> Agk is the proportion of counts for gene g in condition k
> ¢q is the (over)dispersion (parameter) of gene g (supposed to be identical for all
samples)
> estimate its parameters for both conditions

> conclude by computing p-value
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) Basic principles of tests for count data: 2 conditions and
replicates

Notations: for gene g, K;1, .., Kgn, (condition 1) and K§1, .., K&y, (condition 2)
» choose an appropriate distribution to model count data (discrete data,
overdispersion)
ng ~ NB(S;(/lgk’fﬁg)
in which:
> s}‘ is library correction factor of sample j in condition k
> Agk is the proportion of counts for gene g in condition k
> ¢q is the (over)dispersion (parameter) of gene g (supposed to be identical for all
samples)
> estimate its parameters for both conditions
Agt dgz g
> conclude by computing p-value
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) Basic principles of tests for count data: 2 conditions and
replicates

Notations: for gene g, K;1, .., Kgn, (condition 1) and K§1, .., K&y, (condition 2)
» choose an appropriate distribution to model count data (discrete data,
overdispersion)
KY ~ NB(s{ Agk, )
in which:
> s}‘ is library correction factor of sample j in condition k
> Agk is the proportion of counts for gene g in condition k

> ¢q is the (over)dispersion (parameter) of gene g (supposed to be identical for all

samples)
> estimate its parameters for both conditions

Ag1 dg2 ¢g
> conclude by computing p-value = Test

Biostatistique RNA-seq
Toulouse, 16-17 mai 2024 / NV2



Y First method: Exact Negative Binomial test

2 conditions only
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Y First method: Exact Negative Binomial test

2 conditions only

Normalization is performed to get equal size librairies = s
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Y First method: Exact Negative Binomial test

2 conditions only
Normalization is performed to get equal size librairies = s

The test is performed similarly as for Fisher test (exact probability is computed
according to NB distribution after parameters have been estimated)

Toulouse, 16-17 mai 2024 / NV2



) Estimating the dispersion parameter ¢,

Some methods:
> DESeq, DESeq2: ¢4 is a smooth function of 1g = Ag1 = Ago

050
-

dge <- estimateDispersion(dge) §

[
T ™ T
5e-01 50+00 5e+01 5e+02

mean of normalized counts

> edgeR: estimate a common dispersion parameter for all genes and use it as a
prior in a Bayesian approach to estimate a gene specific dispersion parameter by
log-likelihood maximization

dge <- estimateDisp(dge)

INRAZ
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Y Perform the test

Some methods:
> DESeq, DESeq2: exact (DESeq) or approximate (Wald and LR in DESeq2) tests

res <- nbinomWaldTest (dge) res <- nbinomLR(dge)
results(res) results(res)

> edgeR: exact tests
res <- exactTest(dge)

topTags(res)

(comparison between methods in [Zhang et al., 2014])

INRA2 (EOE8
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Y More complex experiments: GLM
Framework:
Kgi ~ NB(ug;j, ¢g) with log(ugj) = log(sj) + log(Ag;)

in which:
> s is the library size correction for sample j;
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Biostatistique RNA-seq
Toulouse, 16-17 mai 2024 / NV2



Y More complex experiments: GLM
Framework:
Kgi ~ NB(ug;j, ¢g) with log(ugj) = log(sj) + log(Ag;)

in which:
> s is the library size correction for sample j;
> log(Ag;) is estimated (for instance) by a Generalized Linear Model (GLM):

log(Agj) = Ao + X}rﬂg

in which x; is a vector of covariates.
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Y More complex experiments: GLM

Framework:

Ky ~ NB(ng, ¢g) with Iog(,ugj) = |Og(Sj) + |Og(/1gj)

in which:
> s is the library size correction for sample j;
> log(Ag;) is estimated (for instance) by a Generalized Linear Model (GLM):

log(Agj) = Ao + X}rﬁg

in which x; is a vector of covariates.
GLM allows to decompose the effects on the mean of
» different factors
> their interactions
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) More complex experiments: GLM in practice

edgeR

dge <- estimateDisp(dge, design) # estimation of dispersion
fit <- glmFit(dge, design) # estimation of parameters

res <- glmLRT(fit, ...) # tests (likelihood ratio)

topTags (res)

DESeq, DESeq2

dge <- estimateDispersions(dge)

fit <- fitNbinomGLMs(dge, count ~ ...)
fit® <- fitNbinomGLMs (dge, count ~ 1)
res <- nbinomGLMTest (fit, fit0)
p.adjust(res, method = "BH")
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> Example

In an experiment, gene expression is influenced by:
> diets: A (reference diet) and B (another diet)
> genotypes: G (reference genotype), H (mutant 1), K (mutant 2)
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> Example

In an experiment, gene expression is influenced by:

> diets: A (reference diet) and B (another diet)

> genotypes: G (reference genotype), H (mutant 1), K (mutant 2)
The model with two additional effects writes:

log(1) = Bo + Bildiet +
S~ ———
basal level for reference  additional expression for diet B
ﬁ21 genotype H + ﬂ31 genotype K
~— —
additional expression for mutant 1 additional expression for mutant 2
Tests:
INRAC
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> Example

In an experiment, gene expression is influenced by:

> diets: A (reference diet) and B (another diet)

> genotypes: G (reference genotype), H (mutant 1), K (mutant 2)
The model with two additional effects writes:

log(1) = Bo + B11dier B +
S~ S——
basal level for reference  additional expression for diet B
ﬁ21 genotype H + ﬂ31 genotype K
— S——

additional expression for mutant 1~ additional expression for mutant 2

Tests:

> Testing if the diet as an effet is equivalent to testing “81 = 0” coef = 2 in g1lmLRT
of edgeR
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> Example

In an experiment, gene expression is influenced by:

> diets: A (reference diet) and B (another diet)

> genotypes: G (reference genotype), H (mutant 1), K (mutant 2)
The model with two additional effects writes:

log(4) = Bo + B1ldietB +
S~ ———
basal level for reference  additional expression for diet B
ﬁ21 genotype H + ﬁ31 genotype K
S e’ N e’

additional expression for mutant 1~ additional expression for mutant 2

Tests:

> Testing if genotype K has an expression different to genotype H is equivalent to
testing “B> = B3” contrast = c(0,0,1,-1) in glmLRT of edgeR
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> Example

In an experiment, gene expression is influenced by:

> diets: A (reference diet) and B (another diet)

> genotypes: G (reference genotype), H (mutant 1), K (mutant 2)
The model with two additional effects writes:

log(1) = Bo + B11diet B +
S~—— S——
basal level for reference  additional expression for diet B
B21 genotype H + ﬂ31 genotype K
S————— S———
additional expression for mutant 1~ additional expression for mutant 2
Tests:

> Testing if the genotype has an effect is equivalent to testing the full model above
against the model log(1) = Bo + B11diet B OF testing B2 = B3 = 0 (coef = 3:4
g1mLRT of edgeR)
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> Contrasts

log(1) = Bo + Bildiet B +
S~ ~—
basal level for reference  additional expression for diet B
ﬁ21 genotype H + ﬁ31 genotype K
— S———

additional expression for mutant I additional expression for mutant 2

testing if genotype K has an expression different to genotype H:

Bo B1 B2 Ps
genotype K 10 0 1

— genotype H 1010
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> Contrasts

log(1) = Bo + Bildiet B +
S~ ~—
basal level for reference  additional expression for diet B
ﬁ21 genotype H + ﬁ31 genotype K
— S———

additional expression for mutant I additional expression for mutant 2

testing if genotype K has an expression different to genotype H:

Bo B1 B2 Ps
genotype K 10 0 1
— genotype H 1010
= contrast: 00 -1 1
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> Example

In an experiment, gene expression is influenced by:

> leg: L1, L2, L3, L4
> type: pull, push
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> Example

In an experiment, gene expression is influenced by:

> leg: L1, L2, L3, L4
> type: pull, push

model .matrix(~ type + leg)

Bo+B112 +B2113 +B31Ls +¥1push

INRAZ
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> Example

In an experiment, gene expression is influenced by
> leg: L1, L2, L3, L4
> type: pull, push

with the interaction term

2.0

model .matrix(~ type + leg + %
type:leg) 151 o

o

Bo + Bilpush + P12 + B31Ls + .

Balrs + vilpush & 12 + o
Y21 push & L3Y2Tpush & L4

o oY

0.5

Testing interaction: coef = 6:8 °
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> Example

In an experiment, gene expression is influenced by:
> leg: L1, L2, L3, L4
> type: pull, push

equivalently, with group = leg x type

2.0

.
3 § ¢

model .matrix(~ ® + group) 15 0 . $ %
A -

B11L1 & punt + B21L1 & push + O T E%%

B3112 & pull + Bal12 & push + A A 2 Foend

Bs113 & putt + Be1L3 & push + Py

0.5

B7114 & pull + Ba1L4 & push
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) Alternative approach: linear model for count data

Basic idea:
1. data are transformed so that they are approximately normally distributed

tcount <- voom(counts, design)

2. alinear (Gaussian) model is fitted (with a Bayesian approach to improve FDR
[McCarthy and Smyth, 2009]):
Kgi ~ N(ugj, 0'5)
with .
E(Kg) = Bo + X/ Bg
fit <- 1mFit(tcount, design)

fit <- eBayes(fit)
topTables(fit, ...)
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Y But never forget: correlation is not causality!

Number of people who drowned by falling into a pool

correlates with
Films Nicolas Cage appeared in

Correlation: 66.6% (r=0.666004)

1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2003
140 drownings & films
n
&
=
c
2 10 drownings 4films £
2 =
5 g
g ]
& . s
£ 100 drownings 2films o3
E
=
I
B0 drownings 0 films
1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009

-8 Nicholas Cage =+ Swimming pool drownings

Spcorrelatlons: http://www.tylervigen.com/spurious-correlations
INRAZ
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Y ... and be aware of the Simpson’s effect!
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) Part V: Interpreting differential analysis results

[ Design of experiment ]

Exploratory analysis
(identify outliers, filter genes, clean
data...)

[ Normalization ]

[ Network analysis

Differential analysis (co-expression,

\ regularory)

Exploratory analysis
Enrichment analysis (clustering, relations
with other 'omics...)
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> Overview of the results: MA-plot

plotMA(..., main="DESeq", ylim=c(-4,4))
plotMA(..., main="DESeq2", ylim=c(-4,4))

DESeq DESeq2

<« & & oo masw sae . < - -

N N
S g
5 . 3
S S .
k=] o . o o =
L L
S ° =)
RN 2

I |

T v v owwoew' * b s .

1 1 T T T 1 1 T T T
5e-01 5e+00 5e+01 5e+02 5e+03 5e-01 5e+00 5e+01 5e+02 5e+03
mean of normalized counts mean expression

(the last one in ude: a prior on log, fold change which results in more moderated
estimate'gomﬁlg LGount genes)
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> Overview of the results: MA-plot

plotSmear (..., de.tags = ...)

logFC

6 8 10 12 14 16

Average logCPM
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) Fold change and p-value: the Volcano plot

p-value versus fold change (both log scaled) scatterplot. Significant genes are in red:

- 2 fold + 2 fold

12

10

-log,o pvalue

pval = 0.01
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» Gene clustering

Prior clustering: transform data to obtain counts with similar variance

» DESeq, DESeq2

varianceStabilizingTransformation(...)

> DESeq2
rlog(...)
> edgeR
cpm(..., prior.count=2, log=TRUE)
INRAZ
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Y Gene clustering

On transformed data, use e.g., heatmap:

Color key

Samples

Genes

which is useful to visualize which genes are over/under-expressed in one condition.
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) Standard property of usual DE analyses

DESeq
< & o samesm sam .
) N
j=2]
s .
=
o
= o .
8
<
j=2}
2« ]
1
T v v vwwmw’

T T T T T T T T
5e-01 5e+00 5e+01 5e+02 5e+03

mean of normalized counts

Remark: low read counts have a too large variance to be found differentially expressed.
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) Standard property of usual DE analyses

DESeq

< & a somsem sam .

log, fold change
0
|

T dv v vwomw’ * ®

T T T T T T T T
5e-01 5e+00 5e+01 5e+02 5e+03

mean of normalized counts

Remark: low read counts have a too large variance to be found differentially expressed.

Consequence: filtering out these genes before the DE analysis because it improves

the power of the test because of multiple test correction.
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> Example

Filtering out the 40% genes that have the lowest overall counts does not affect much
low p-values:

O pass
O do not pass

frequency
| | | |

100 200 300 400 500 600

0
L

but leads to find new DE genes that were previously discarded by multiple test
correction.
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Y Filtering in practice

cdsFilt <- HTSFilter(...,
res <- exactTest(cdsFilt)

plot=FALSE)$filteredData

log, fold change
0
|

5e-01

B\ostatlsthue RNA—seq
Toulouse, 16-17 mai 2024 / NV2

1 1 1 T
5e+00 5e+01 5e+02 5e+03

mean of normalized counts

p. 65



> Insummary... (with edgeR)

preparation of the design of the experiment
| sequencing

count data exploratory analysis (hist, boxplot...)
\ creating an R object with count data (DGEList)
a DGEList object

| normalization (calcNormFactors)

a DGEList object with normalization factors
‘ fitting the model (estimateDisp)

a DGEList object with dispersion estimates
‘ filtering low count genes (HTSFilter)

a DGEList object without filtered genes

‘ test (exactTest or glmFit/glmLRT)

a DGEExact or DGELRT object exploratory analysis (topTags, plotSmear...)
INRAZ
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