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Abstract
In this paper, we focus on the problem of variable selection in a functional regression framework. This ques-
tion is motivated by practical applications in the field of agronomy where identifying temporal periods during
which weather measurements impact the most the obtained yield is critical to guide agriculture practices in
a changing environment. From a methodological point of view, our goal is to identify consecutive measure-
ment points in the definition domain of the functional predictors, which correspond to the most important
intervals for the prediction of a numeric output from the functional variables. We propose an approach based
on the versatile random forest method that benefits from its good performances for variable selection and
prediction. Our method builds in three steps (interval creation, summary, and selection). Different variants
for each of the steps are proposed and compared on both simulated and real-life datasets. The performances
of our method compared to alternative approaches highlight its usefulness to select relevant intervals while
maintaining good prediction capabilities. All variants of our method are available in the R package SISIR.
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1 INTRODUCTION

1.1 A variable selection problem for non-
parametric functional regression

The present article focuses on functional regression problems,
in which a real random variable Y is predicted from a func-
tional predictor X that takes values in a functional space, H
(e.g., L2([0, 1])). The range of X is supposed to be a bounded
interval [a, b] of R and we are given n i.i.d. observations of
the random pair (X, Y), (Xi, yi)i=1,...,n. This settings have been
widely studied over the past years under the name of Functional
Data Analysis (FDA), especially since the seminal works of
[51, 52, 20]. It covers a wide range of applications including
spectrometric data [20, 57], handwriting recognition [6, 64], or
weather data [47, 28].

Here, we focus on the non parametric setting

Y = F(X) + ϵ, (1)

where F is an unknown function and ϵ is an error term. Non-
parametric estimation in FDA has been addressed by a variety
of methods including nonparametric kernel estimate [20], k-
nearest neighbors [12], SVM [57, 29], multi-layer perceptron
[56, 21], or random forest [45, 27]. They have often been found
to have a higher prediction accuracy and are more suited to
model complex phenomena. However, the form of F is often
not easily interpretable and, contrary to more simple linear
models, does not straightforwardly identify which specific part
of the functional predictor bears most of the variability of the
output. Even in the case of the functional linear model

Y = 〈X,β〉H + ϵ,

the authors of [32] comment on the fact that coefficient curves
β that have a “structure” are often easier to interpret. In their
case, they propose to structure β under the form of regions in
the range of X where β(t) = 0 and regions where β(t) is exactly
linear. From a practical point of view, the latter regions are
those where the values of X have an impact on the values of Y
and can help the user interpret the predictive model. Similarly,
taking an example from agronomy (see Section 3), if X is a
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weather time-series and Y is the field yield at the end of the
year, these regions are the period of the year during which the
weather has a strong impact on the yield: This information is
thus critical to inform decision-making in agronomy.

From a formal point of view, the current article thus aims
at simultaneously finding an accurate solution for the nonpara-
metric model of Equation (1) while selecting a subset S ⊂
[a, b] of important observation points in the range of X such
that if Xa and Xb are two observations of X with Xa(t) = Xb(t)
∀ t ∈ S and Xa(t∗) 6= Xb(t∗) ∀ t∗ /∈ S , we have F(Xa) = F(Xb).
In other words, the observation points in S are the only points
that change the prediction F(X). To ease interpretation and as
discussed before, it is additionally desirable that S is searched
under the form of unions of disjoint intervals

S = ∪K∗

k=1I∗k ,

with I∗k = [ak, bk] ⊂ [a, b], bk > ak, and ∀ k 6= k′, I∗k ∩ I∗k′ = ∅.
In the sequel, such intervals will be termed “impact intervals”.

1.2 Related work

Some previous works have already addressed variable selec-
tion in functional prediction models. Some of these proposals
focus on selecting a finite number of isolated observation
points in [a, b] (e.g., S = {τj}j=1,...,K that are called “sensitive
points” or “points of impact”): In the linear setting, [3] use a ℓ1-
penalty, [43] focus on selecting a unique “sensitive” time point
assuming fractal behavior for X, and [35] propose a method
based on a local selection procedure performed separately
from the regression model estimation. In the nonparametric
setting, [19] design an influential measure for nonparametric
regression models based on cross validation.

A limited number of articles have addressed this question
in a setting that allows to select more interpretable intervals
as we seek: [55] proposes a group-Lasso approach in a linear
setting but her method requires that the range of X, [a, b], is
a priori partitioned into intervals, which is a nontrivial task
with a potentially high impact on the relevance of the results.
Also in the linear setting, [46] propose a linear classification
method based on a linear discriminant analysis that has a dou-
ble penalty: A ℓ1-penalty is used to impose sparsity on the
functional regression coefficient and a ℓ2-penalty is used on
its derivative to impose regularity. However, this approach is
restricted to identify very smooth regression coefficients and
to the linear setting. Also restricted to the linear setting and
building on the smoothness of the regression coefficient, [32]
propose the FLiRTI method that combines basis representa-
tion to variable selection with the Lasso. Finally, [28] propose
a very different course of action based on a sparse Bayesian
functional model where an a priori distribution is defined for

the intervals. However, this approach, which uses a Gibbs sam-
pler, is computationally very demanding and not adapted to the
case of large datasets.

As far as we can tell, only two previous articles have ad-
dressed this question in a non-linear functional regression
setting: [47] developed a semi-parametric model, the penalized
multidimensional sliced inverse regression. In this approach,
the intervals are defined automatically using a sequential and
greedy approach, without any a priori knowledge, and they
are then selected thanks to the inclusion of a group-Lasso-like
penalty in the model. However, while efficient, this approach
requires tuning several hyper-parameters (dimension of the
projection space, regularization parameters, and parameters of
the greedy aggregation) which makes the results sensitive to
their choices and the method potentially intensive to run when
a meticulous tuning is performed. Also, [13] proposed an op-
timization framework to learn relevant intervals in a so-called
“optimal tree” approach, which uses Lasso selection. However,
the computational needs of their approach seem to make it
suited to fit only one tree, which is well-known to lack robust-
ness as compared to RF [14]. In addition, it requires the tuning
of several sparsity and regularity hyper-parameters (in addition
to the number of intervals), which potentially makes its results
also sensitive to their choices.

Our approach builds on this latter work, proposing a data
driven approach for functional data regression that uses ran-
dom forest and is able to simultaneously estimate a prediction
model (in a nonparametric way) and detect impact intervals in
the range of X.

1.3 Description of our contribution

Our contribution is the proposition of an extension of RF to
functional regression that is interpretable in terms of important
intervals. More precisely,

1. we propose a new RF-based functional regression method.
It has the simplicity of RF models, requiring no or only a
few hyper-parameters tuning;

2. we embed the automatic definition and selection of impact
intervals in this method;

3. we empirically demonstrate on simulations and real-life
datasets that our approach achieves a better trade-off be-
tween prediction accuracy and relevance of the selected
intervals than alternative approaches.

In addition, our method, termed SFCB (Selection Forest for
funCtion Based predictions), is implemented in the R package
SISIR (version ≥ 0.2.0), released on CRAN.

Note that, in previously cited works of the literature, the
authors either suppose that the observations of the functional
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variable, (Xi)i=1,...,n, are perfectly known or that they are them-
selves perfectly or imperfectly observed at different points in
[a, b]. In the present contribution, we place ourselves in the re-
alistic setting where Xi are all measured at points t1, . . . , tp in
[a, b] (measurement points are common to all observations but
might be irregularly distributed in [a, b]; Xi is observed with-
out error at (tj)j=1,...,p). We will denote xi the p dimensional
vector (Xi(t1), . . . , Xi(tp))⊤.

The article is organized as follows: Section 2 presents the
method and its different variations. Section 3 describes the
datasets used for the evaluation, both simulated and from
real-world problems. Finally, results and comparisons with
alternative approaches are provided in Section 4.

2 METHOD

2.1 A new random forest for functional
data

Random forest for functional data in the literature
In the last decade, with the increase of real-time measurements,
RF have been adapted to handle functional predictors, and es-
pecially to longitudinal predictors (e.g., time series). A first
direction is to extend RF to similarity data embedding the re-
semblance between time series, such as the work on Fréchet
forest [16] or on proximity forest [40] (restricted to classifi-
cation). In these approaches, the direct relation between the
functional predictors and the prediction model is lost, because
the prediction model is trained from similarities: The method
is thus impossible to interpret in terms of relevant intervals
in the predictor range. Other methods are based on dictionar-
ies or symbolic representations of the time series such as the
work of [58] (BOSS) then extended in TS-CHIEF [59] (which
combines different types of splits including dictionary-based
splits), or the work of [9] that uses symbolic representation of
longitudinal data. Again, due to the symbolic intermediate rep-
resentation of the data, these methods are hard to interpret in
terms of relevant intervals in the predictor range.

Finally, other longitudinal data RF-based classifiers exist
that are built on interval techniques. This is the case, for in-
stance, of Time Series Forest [18] and its extension [44]. In
these methods, intervals must be defined a priori and they are
summarized using simple statistics (such as means and stan-
dard deviations of the predictors on this interval) and then used
as new inputs for the RF. These approaches have appealing
properties such as their interpretability in terms of intervals
or their simplicity but they can not handle the selection of
all possible intervals and are thus restricted to certain a pri-
ori intervals for which the user must have certain knowledge.
Another interval procedure that does not require the a priori

definition of intervals is RISE [39]: In this method, an interval
is randomly sampled (uniform sampling of the start and end
positions of the interval over the predictor range) and a tree
is then built only on this interval. However, in this approach,
the notion of the importance of an interval is lost because, by
definition of the aggregation step in RF, all randomly sampled
intervals contribute similarly to the prediction. Similarly, [45]
use an interval-based random forest by randomly sampling a
different set of intervals for each tree. Again, importance is
computed for each observation points.

Estimating F with random forest
Our functional random forest method builds on the proposal
of [18, 44] but provides a data-driven method to define inter-
vals, which is thus well adapted to the selection goal, a a more
relevant definition of summary computation, better adapted
to the regression purpose. More precisely, given observations
(xi, yi)i=1,...,n,

1. Step 1: [a, b] is partitioned into K data-driven disjoint in-
tervals I = {Ik}k=1,...,K, which reduces to a partition of
{t1, . . . , tp} under contiguity constraint over the (tj)j. Dif-
ferent solutions to find relevant partitions are discussed in
Section 2.2;

2. Step 2: Xi is summarized in Ik by L numeric summaries,(
x̃(l)

i,k

)
l=1,...,L

(with L = 1 or 2 in our propositions) for
every i and every interval k. Different solutions to sum-
marize functional data in a given interval are discussed
in Section 2.3 and, given I, we will denote by TI the
transformation that maps a given (Xi, yi) (or sometimes
just a given Xi; see Section 2.3 for details) to the K × L
dimensional vector

(
x̃(l)

i,k

)
k=1,...,K, l=1,...,L

.

Similarly to [18, 44], F is then estimated by

F̂ = RF∗ ◦ TI ,

where RF∗ is the random forest trained with training data
(TI(Xi, yi), yi)i.

Note that RF∗ ◦ TI could be seen as an under-efficient ran-
dom forest compared to the one that could have been trained
directly using (xi, yi) as the training dataset. However, it has
two main advantages:

• in functional regression models, it is frequent that the value
of the functional predictors at a given observation point
are not directly comparable and that the functional predic-
tor should allow some local translations. This is illustrated,
for instance, by the very recent work of [41], in the field
of agronomy, which showed that measurements of weather
data at on a fine temporal grid are less relevant for the pre-
diction task than summarized data at interval levels. Using
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information on autocorrelation of X along its range is thus
a way to summarize the information in a way that is more
relevant for prediction purpose;

• predictors of RF∗ are values directly associated to interval
Ik. Thus, selecting variables in this setting is equivalent to
looking for the impact interval set S .

Searching for S to improve interpretability
As discussed at the end of the previous section, a simple way to
define S would be performing a variable selection method us-
ing (x̃(l)

ik , yi)i=1,...,n to select a few number of predictors among
(x̃(l)

.k )k=1,...,K, l=1...,L. Denoting VS the variable selection proce-
dure built from (x̃(l)

ik , yi)i=1,...,n, VS maps (x̃(l)
ik )k=1,...,K, l=1...,L

to the subset (x̃(l)
ik )(k,l)∈S, where S does not depend on i. We can

then derive S as:

Ik ∈ S ⇔ (k, l) ∈ S for at least one l ∈ {1, . . . , L}.

Various choices for VS are discussed in Section 2.4.
Using variable selection, another estimation of F can

be obtained based on the new restricted set of predictors,
(VS(TI(Xi, yi))i:

ˆ̂F = RF∗∗ ◦ VS ◦ TI ,

where RF∗∗ is the random forest trained with training data
(VS(TI(Xi, yi)), yi)i.

Overview of the method and implementation
Figure 1 illustrates the different steps of the estimation pro-
cedure described in this section. The first box corresponds to
the definition of I, the second to TI and the third to VS . Our
method is implemented in the R package SISIR (in versions
≥ 0.2.0 of the package) in the function sfcb. The package also
includes diagnostic quality criteria (including the ones used in
the present article; see Section 3) and plots.

Overall, the whole procedure only requires the choice of the
different options for the three steps of the methods (relevant
choices for different goals are discussed in the next sections).
Contrary to the work of [13], which targets a similar goal,
it is thus simpler and faster to use (in addition to providing
flexibility and robustness of random forest compared to regres-
sion trees) but at the cost of having the different steps of the
approach fitted independently instead of as a whole.

2.2 Building a relevant hierarchy of parti-
tions

The first step of our method consists in partitioning [a, b] into
a relevant set of K intervals, I = {Ik}k=1,...,K. This is equiva-
lent to partitioning {t1, . . . , tp} into K groups constrained to be
contiguous. To achieve this, we used clustering methods based

on values of (X(tj))j=1,...,p so as to group together time points
that have strongly associated values for the functional predic-
tor X. This type of approach is usually named “clustering of
variables” and we used versions constrained by contiguity of
the time points {t1, . . . , tp}. Hence, in the following, we do
not differentiate the partition of {t1, . . . , tp} (which is the ulti-
mate goal) from the clustering of (X(tj))j=1,...,p, (which is the
method used to achieve this goal).

In addition, to allow more flexibility in the choice of K in a
simple way, we investigated hierarchical methods, which pro-
vide a hierarchy of partitions, {Il}l=1,...,p, where I1 is the naive
partition made of the p singletons {tj}, Ip is the partition made
of the unique cluster {t1, . . . , tp}, and the difference between
Il and Il+1 reduces to the merge of a single pair of clusters.

A constrained based Ward’s hierarchical clustering based
on correlation (adjclust)
One of the most used method to provide a hierarchy of clus-
ters is “hierarchical clustering”, which is based on a linkage,
e.g., the definition of a distance between clusters that is de-
duced from the distance of pairs of objects. One of the most
used linkage is the so-called “Ward’s linkage” [63]: It aims
at minimizing the decrease in variance between clusters when
merging two clusters. In its standard version, Ward’s link-
age computed the variance induced by the Euclidean distance.
However, clustering (X(tj))j=1,...,p based on their Euclidean
distance is not relevant since we are more interested in clus-
ters with strong correlations rather than in clusters with close
values. Kernel hierarchical clustering [49, 1] extends Ward’s hi-
erarchical clustering to the case where the distance is induced
by an arbitrary dot product given under the form of a kernel
matrix [5]. Here, we proposed to use the constrained version
of this method, as described in [2] (and implemented in the R
package adjclust) and to use the empirical variance matrix

Σ st Σj,j′ =
1

n

∑
i

(xij – x̄j)(xij′ – x̄j′) (2)

as the kernel. The method is detailed in Algorithm 1 of the
appendix.

A constrained-based hierarchical clustering based on PCA
(cclustofvar)
[17] also proposes a hierarchical clustering approach that is
based on a correlation criterion through a PCA decomposition.
More precisely, starting from the naive partition made of the
p singletons {tj}, two clusters are merged if they are the ones
minimizing the overall loss in homogeneity, where the homo-
geneity of a cluster is defined as the first eigenvalue of the PCA
of the variables (X(tj))j included in this cluster. We used this
approach, adding a contiguity constraint (the minimization is
performed over any pair of two contiguous clusters only, where



Interval selection with random forest 5

partition of the
functional range

adjclust
or

cclustofvar

summary computation

basics
or

cclustofvar
or

PLS

selection

boruta
or

relief
or

no selection

+ target prediction
(with RF)

F I G U R E 1 Overview of the different steps and variants of SFCB.

the contiguity is based on the values of tj). The detailed method
is given in Algorithm 2 of the appendix.

Note that, in addition to providing a hierarchy of partitions,
the later approach offers a simple and interpretable summary of
the intervals, as a by-product. Indeed, as described in [17], the
homogeneity of an interval Ik of the partition I can be rewritten
as

H(Ik) =
∑

j: tj∈Ik

Cor2((xij)i, ck), (3)

where Cor2 is the squared Pearson correlation and ck ∈ Rn

is the first eigenvector of the PCA, which can be used as a
summary of Ik.

Choice of the best partition
Once the hierarchy of partitions is obtained, we chose to retain
only one partition, I = {Ik}k=1,...,K. This could be chosen us-
ing heuristics dedicated to the choice of the number of clusters
in hierarchical clustering like inspection of the dendrogram†,
the broken stick heuristic [10], the slope heuristic [24, 4], the
gap statistics [62] (unfortunately computationally intensive),
etc. Based on our experiments, we advise choosing a level
of the hierarchy where the number of clusters is not too low,
to allow for sufficient precision in the detection of relevant
intervals.

2.3 Summarizing the predictors on inter-
vals

The second step of our method consists in summarizing the in-
formation of (xi)i=1,...,n over each interval Ik (k = 1, . . . , K),
hence, defining the transformation TI . This approach has al-
ready been followed by [45], who used the mean, by [18],

† Note, however, that due to the contiguity constraints, the obtained dendrogram might
include reversals and be harder than usual to read [53].

who used the mean, the standard deviation, and the slope as
summaries, and by [44] who used catch22, a set of 22 fea-
tures considered as the canonical time-series characteristics.
The higher the number of summaries for a given interval is,
the more complete and precise the information on the signal
is. However, a high number of summaries brings the question
of interpretability back, since many different intervals could
be found important in the prediction for different summaries.
This led us to consider different versions of this approach, all
restricted to a small number L ∈ {1, 2} of summaries.

A natural choice to summarize the (xij)j: tj∈Ik for every inter-
val k would be a linear combination of these values, leading to
so-called “oblique splits” [11, 30]. Whilst very flexible and bet-
ter adapted to the prediction of Y, these approaches often lead
to difficult computational problems that are not suited to han-
dle complex large-dimensional questions, such as functional
regression. Hence, based on a priori grouping of variables,
[48] propose to use (regularized) linear discriminant analy-
sis (LDA) to automatically define such oblique splits at a low
computational cost (see also [50], who use canonical correla-
tion analysis for multiple outputs). Based on these ideas, we
proposed 3 methods to summarize the variables, all fast to com-
pute, and one using the information provided by the target,
similarly to [48].

Basic unsupervised summaries (basics)
Similarly to [18], our first strategy consisted of simply using
the mean and standard deviation as input of our RF. More
precisely, the original functional observations (xi)i are trans-
formed using the following mapping:

TI : xi ∈ Rp –→ (x̃(l)
i,k )l=1,2, k=1...,K ∈ R2K
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with

x̃(1)
i,k =

1

#Ik

∑
j: tj∈Ik

xij and x̃(2)
i,k =

√√√√ 1

#Ik

∑
j: tj∈Ik

(
xij – x̃(1)

i,k

)2

.

Note that, contrary to [18] and [44], we did not include the
slope or more sophisticated characteristics in our summaries
to maintain a good ability to interpret the model.

A composite unsupervised summary based on PCA
(cclustofvar)
As mentioned in Section 2.2, the constrained clustering of vari-
able derived from [17] offers a natural composite summary of
a given interval (cluster) Ik simply setting x̃(1)

i,k = cki where ck

is the Rn vector of Equation (3).

A supervised summary based on PLS (pls).
Similarly to [48], we also tested a supervised summary using
the target Y. To avoid the need for regularization (or penaliza-
tion) and subsequent tuning of the regularization parameter in
large dimensions (when the number of observation points in Ik

is close to or larger than n for instance), we replaced LDA with
PLS (Partial Least Squares; [65]). (x̃(l)

i,k )l=1,...,L thus correspond
to the first L-th PLS scores (L = 1 in our implementation) of
the PLS regression of Y on X.

2.4 Interval selection

Variable importance in random forest is usually thought as an
efficient and simple way to select variables from a trained ran-
dom forest (see an application in [31] in the field of network
inference, which compares extremely well with other methods
[42]). In short, given a random forest predictor, based on i.i.d.
observations of p predictors, zj

i, and their corresponding values
to predict yi ∈ R, the importance of the j-th variable is defined
as the mean decrease in (out-of-bag) accuracy in the prediction
of yi when replacing zj

i by a permuted version of this predictor
(over i).

Hence, a simple way to define S would be to set

Ik ∈ S ⇔

ImportanceRF∗

(
x̃(l)

.k

)
≥ τ for at least one l ∈ {1, . . . , L},

for a given chose threshold τ > 0.
However, this selection is rather basic and sensitive to

the arbitrary choice of τ , when state-of-the-art feature selec-
tion methods have been developed during the past years [38].
We propose alternative choices to make the interval selec-
tion based on the modified features {x̃(l)

ik }k,l. We restricted our
choices to embedded methods (in which the selection is directly

embedded in the random forest algorithm) or to wrapper meth-
ods (in which it is made in relation to the prediction purpose
without being embedded into the random forest algorithm).
The first has the advantage of being adapted at best to random
forest and the second to being fast whilst accounting for the
analysis objective. We did not consider filter methods, often
found to be poorly efficient.

A wrapper method based on Relief (relief)
One of the most popular and efficient wrapper methods for bi-
nary classification problems is the Relief algorithm introduced
by [34]. This score has been adapted to regression by [54],
which is the variant that we used. In short, RReliefF computes
a score for each summary variable x̃(l)

.,k , RReliefF(k, l), which is
based on estimates of the differences between x̃(l)

i,k and x̃(l)
i′,k with

respect to the differences between yi and yi′ for all i′ ∈ NN (i)
(set of nearest neighbors of i according to the whole vector
x̃i): the RReliefF score, x̃(l)

i,k increases when large differences in
‖yi –yi′‖ result in large differences between x̃(l)

i,k and x̃(l)
i′,k. It can

be seen as a way to score variables x̃(l)
.,k based on the estimation

of
P
(

distance(x̃(l)
i,k , x̃(l)

i′,k) | |yi – yi′ |, i′ ∈ NN (i)
)

.

Variants of this method correspond to different choices for the
computation of the distance between observations of x̃(l)

.,k or
for the weighting scheme to account for differences in yi –
yi′ . The precise description of the used algorithm is given in
Algorithm 3 of the appendix (and is the one implemented with
the option RReliefFexpRank in the R package CORElearn).
Obtained values for x̃(l)

.,k are then ordered and a broken stick
heuristic [23] is then used to select the variables associated to
the highest scores.

An embedded method based on knockoffs (boruta)
Another approach that combines feature selection with random
forest is proposed in [36] (R package Boruta), which uses
shadow variables (similar to the knockoffs approach of [8]). In
short, a random forest is learned on an extended datasets where
each predictor is augmented with its randomized version. Se-
lected variables are those that have a normalized importance
score larger than their randomized copy. The method returns
“confirmed” and “tentative” selective features, the latter corre-
sponding to variables for which the importance score can not
be significantly distinguished from their copy. We kept the two
types of selected features in our final selection.

Another embedded method, VSURF [26, 25], was also con-
sidered in preliminary simulations but was finally dismissed
due to its large computation time (despite preliminary relevant
selection results).

Note that other embedded methods for variable selection
with random forest also exist, such as the recurrent relative vari-
able importance [61] or Vita [33] (R package Vita, based on a
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testing framework). We chose not to test these methods based
on the results of [60], which reported Boruta and VSURF as
the best-performing methods for variable selection with RF.

3 EXPERIMENTS

All simulation scripts and used datasets are available at https:
//doi.org/10.57745/KMH2GP (datasets) and https://forgemia.
inra.fr/sfcb/simus_sfcb.git (scripts and results), with supple-
mental results and quality criteria.

In all experiments, the evaluation mostly focuses on the
quality of the reconstruction of S , even if we also provide as-
sessment of the quality of the prediction through mean square
error.

3.1 Datasets

The different variants of the proposed method were tested both
on a simulated dataset and on a real-life dataset and compared
with two other alternatives, the linear bliss method [7] and
the semi-parametric SISIR method [47], which, as far as we
can tell, were the only ones that provided readily available
implementations (in R packages).

3.1.1 STICS dataset

A simulated dataset has been obtained from the meteorolog-
ical data simulator WACSGen [22]. This simulator has been
calibrated to reproduce the meteorological characteristics of
Lleida (Spain) for the years 1981 and 1982. These data have
then been used in the agriculture model STICS [15] and
different parameters have been varied to simulate wheat cul-
ture under different scenarios. The STICS simulation model
also generates intermediate computed meteorological measure-
ments, known to be relevant for various agronomic questions.
In particular, in our simulations, we used the evapotranspira-
tion (ETM in mm/day), which is computed from four classical
meteorological measurements (rainfall, min, max, and average
temperature) together with other data like CO2 input, yield hu-
midity, wind speed, etc. Note that the same input data had also
been used to test the SISIR approach in [47].

More precisely, the predictors consisted of 1,000 ETM time
series (xi)i, observed at 444 time points during the crop period,J287, 730K (in days). We then generated a dataset according to
the following simulation model:

∀ i = 1, . . . , 1, 000, yi = log (1 + |〈xi,β〉|) + ϵi,

where β corresponds to a function with varying influence on
(known) selected intervals β : t ∈ J287, 730K 7→ 4 ×

1{t∈[320,410]} + 2 × 1{t∈[500,550]} – 1{t∈[680,730]} (hence, S =

[320, 410] ∪ [500, 550] ∪ [680, 730]). ϵi are i.i.d. errors drawn
from N (0, 0.5). The final signal-to-noise ratio was equal to
∼ 130.

3.1.2 Truffle dataset

Second, we used the dataset also used to test the bliss method in
[7]. The goal of the regression in this dataset is to predict black
truffle production given some meteorological measurements.
The black Périgord truffle (Tuber Melanosporum Vitt.) is one
of the most famous and valuable edible mushrooms, because
of its excellent aromatic and gustatory qualities.

Relevant meteorological data correspond to the maximum
monthly air temperature (Tmax) and the monthly rainfall (P)
(recorded), the monthly climatic water balance (PmPET), and
the cumulated climatic water deficit (CWD) (computed). PET
was calculated according to Hargreaves equation based upon a
monthly latitude factor, mean monthly air temperature, and a
coefficient for monthly relative humidity and was used to ob-
tain PmPET (P minus PET). CWD was calculated as the sum
of the positive water balances on a defined period. For each of
these variables, we have 15 monthly measures from January
of year Y to March of year Y + 1 for Y ∈ J1925, 1949K and
n = 25 yearly yield of truffles which are given for the same
periods. In addition, experts provided, for each meteorological
data, important intervals. This was used as ground truth set S
in our simulations.

For more details on this dataset, we refer the reader to [7].
In addition, part of this dataset has been released on the SISIR
package (corresponding to the input variable P).

3.2 Variation of performances in different
simulated scenarios

SFCB was further tested in different situations correspond-
ing to variations of the initial simulation setting based on the
STICS dataset (see Section 3.1.1). More precisely, we assessed
the robustness of the proposed method with respect to these
variations:

• the number, length(s), and effect size(s) of the influence
of the ground truth intervals (unless stated otherwise, the
effect size is set to 4);

• the shape of the link function (log in the baseline scenario)
and the shape of β (piecewise constant in the baseline
scenario);

• the signal-to-noise ratio;
• n (number of samples) and p (number of observation points

in the functional predictor definition domain).

https://doi.org/10.57745/KMH2GP
https://doi.org/10.57745/KMH2GP
https://forgemia.inra.fr/sfcb/simus_sfcb.git
https://forgemia.inra.fr/sfcb/simus_sfcb.git
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The precise definition of these different simulation scenarios
is given in Table 1. In all scenarios, except for the “Signal-to-
noise ratio” setting, we set the variance of the error so as to
keep the signal-to-noise ratio approximately constant.

3.3 Comparison methodology

The different options for the three steps of our approach de-
scribed in Section 2 were tested on both datasets. We selected
results corresponding to a number of intervals, K, equal to
∼ 0.15p (currently the default value in the implementation)
since preliminary tests showed that this almost always led to
a good trade-off between relevant interval definition and good
mean square error (MSE) for the selected intervals.

In addition, for SISIR, we used the dedicated R package
SISIR with default pipeline (where hyper-parameters are set
by a cross-validation strategy). The non-parametric part of the
model was estimated using Support Vector Machines (SVM;
implementation based on e1071), as in the original paper. For
bliss, we also used the dedicated R package bliss with the
number of intervals K optimized for a BIC criterion using the
dedicated BIC_model_choice function.

To compare SFCB to SISIR and bliss, two target objectives
were mainly assessed:

• the relevance of the selected intervals compared to the
ground truth. To do so, we computed precision and recall
of the selection compared to the ground truth set S =

{β(t) 6= 0 : t ∈ (tj)j=1,...,p}, where β is the ground truth
function (explicit value given in Section 3.1.1 for the simu-
lated dataset obtained from STICS variables and observed
values at (tj)j=1,...,p provided by experts and available in
the truffle datasets at https://doi.org/10.57745/KMH2GP).
In addition, a standard trade-off criterion was computed
between these two quantities as

F1 = 2
precision× recall
precision + recall

.

• the goodness-of-fit of the predictions obtained from the
models was also evaluated using MSE.

In addition, the computational time required by the different
methods were also compared. Computations were performed
on a personal desktop computer with Intel(R) Core(TM) i7-
6600U CPU @ 2.60GHz for the small truffle dataset and on
the Genotoul-bioinfo cluster https://bioinfo.genotoul.fr/ for the
simulated dataset. Information on used OS, as well as R and
package versions is available in the source code repository.

4 RESULTS

4.1 Method comparison for the STICS
dataset

First, SFCB is compared to bliss and SISIR on the simulated
dataset based on STICS ETM. The options used for this com-
parison are adjclust for the functional range partition, PLS for
summary computations and boruta for the selection.

Figure 2 respectively gives precision and recall and F1 score
of the obtained interval selection (ground truth corresponds
to non-zero time points for β; see Section 3.1.1), as well
as mean square error (MSE) and computational time of the
method. bliss does not appear in this comparison because it
doesn’t select any interval (although its computation time was
approximately one day).

Overall, SFCB exhibits a strong improvement of the preci-
sion of the selected intervals (compared to SISIR), at the cost
of a slight increase of the MSE. Note that SFCB and SISIR
MSE are, however, not fully comparable since SFCB MSE is
the out-of-bag MSE, whereas reported SISIR MSE is the train-
ing error of the SVM learned on the intervals (thus probably
more optimistic). Finally, SFCB has a low computation time
(only ∼ 8 minutes here), which, contrary to SISIR, includes
the training of the prediction method based on the intervals.

In addition, Figure 3 shows the selected intervals (compared
to ground truth) for the two methods, as well as the impor-
tance obtained for the SFCB method trained with adjclust for
the group definition and PLS for the summary computation
but with no variable selection. Overall, the figure confirms the
previous findings: SFCB is much more specific than SISIR
and clearly identifies the three relevant intervals, with only a
few mistakes. The variable importance shows a good agree-
ment with selected intervals but might not be enough, alone, to
identify the last interval (which indeed has a smaller influence
in the prediction model), validating the relevance of using a
variable selection approach on top of the method.

4.2 Method comparison for the truffle
dataset

Four different predictors (CWD, P, PmETP, and Tmax) are
available for the truffle datasets, for which the three methods
could be fully compared (in this case, bliss gave selection re-
sults). Figure 4 provides quality criteria obtained by the three
methods for the four targets. For a fairer comparison SFCB was
used with the same variant as for the simulated dataset (adjclust
/ PLS / boruta) but the results for another variant (found bet-
ter here), clustofvar (partition) / clustofvar (summary) / relief
(selection), is provided in our code repository.

https://doi.org/10.57745/KMH2GP
https://bioinfo.genotoul.fr/
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T A B L E 1 Description of evaluated variations of the simulation setting of Section 3.1.1.

Variation type Scenario identifier Description

Intervals S SC1 One large interval in the middle of the definition domain: I∗1 = [420, 570]
SC2 One large interval at a border of the definition domain: I∗1 = [580, 730]
SC3 One small interval in the middle of the definition domain: I∗1 = [480, 510]
SC4 One small interval at a border of the definition domain: I∗1 = [700, 730]
SC5 Four small intervals: I∗1 = [300, 330], I∗2 = [420, 450], I∗3 = [550, 580], and I∗4 = [660, 690]
SC6 Two intervals with opposite influence (positive and negative, respectively): I∗1 = [420, 570] and

I∗2 = [510, 580]
SC7 Two intervals with different effect sizes (respectively 2 and 20): I∗1 = [330, 400] and I∗2 = [600, 670]

Link function L linear L : z → z
(yi = L(|⟨x,β⟩|) + ϵi) quadratic L : z → z2

Signal-to-noise ratio 10{–2, –1, 1, 2} of the original signal-to-noise ratio

Shape of β park1 and park2 see [46]

n n ∈ {50, 100, 200, 500, 1000}

p p ∈ {111, 222, 333, 444}

F I G U R E 2 Quality criteria (precision, recall, F1 score, mean square error and computation time) obtained by SFCB (red,
left) and SISIR (blue, right) on the simulated dataset.

For most prediction tasks, bliss is providing a much bet-
ter selection with respect to what was expected by experts. In
particular, F1 score is much stronger for CWD and PmETP pre-
dictors but slightly worse than that of SFCB for Tmax. Note
that the bliss method has originally been tuned on this dataset
so it is expected to perform particularly well. In all cases, SISIR
obtained average results, comparable to SFCB (with the same
precision and recall for CWD and PmETP) or worse.

For the MSE, SFCB ranked average to low, whereas bliss
gave very bad prediction results. An explanation for this con-
tradictory result is that the intervals selected as relevant by
experts are always very short, except for Tmax that contains
more than half of the initial time points) and probably not suf-
ficient to achieve a good prediction result. This also explains
the low overall F1 score obtained by all methods except for
bliss (the recall is always very high or equal to 1 but with a
poor precision). In this situation, bliss confirms its stringent
selection, matching the experts’ expectations but not selecting

other variables important for the prediction task. In all cases,
SFCB obtained a good trade-off between accuracy of the pre-
diction and relevance of the variable selection at a very low
computation cost.

4.3 Influence of the different options on the
STICS dataset

The different variants for SFCB methods are also compared
on the simulated dataset based on STICS ETM. Figure 5
gives precision & recall, F1 score, and computation time for
these variants. Overall, the selection based on boruta obtains
better precision for all variants, resulting in an increased F1

score. If not always the best, the scenarios with PLS for sum-
mary tend to give good results, whatever the other options. As
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F I G U R E 3 True (bottom) versus selected (top) intervals
obtained by SFCB (left, red) and SISIR (right, blue) on the sim-
ulated dataset. The curve in the SFCB panel corresponds to the
variable importance for the SFCB method with no variable se-
lection (but the same choice for the groups and the summaries).

F I G U R E 4 Quality criteria (F1 score, mean square error,
and computation time) obtained by SFCB (red, left) and SISIR
(blue, middle), and bliss (green, right) on the simulated dataset.

for the partition method, adjclust shows superior results com-
pared to cclustofvar when combined with boruta but not when
combined with relief.

MSE is rather stable over the different variants but adjclust
/ PLS / boruta stands out as one of the methods with the low-
est error, indicating that MSE can be used as a mean to select
the most relevant variant for SFCB in real-life situations. Also
worth noting is the fact that selecting variables instead of just

F I G U R E 5 Precision & recall (first row), F1 score (second
row), mean square error (third row) and computational time
(fourth row) obtained by the different variants of SFCB on the
simulated dataset.

using the obtained summaries does not strongly deteriorate
MSE in all situations, advocating again for variable selection
instead of just relying on variable importance.

As expected, using boruta is more demanding in terms of
computational effort. For large datasets, the use of relief can
thus come as a benefit for selection. The difference in compu-
tation between adjclust and cclustofvar when boruta is used
for selection is explained by a difference in the selection step,
which might come from the fact that cclustofvar produces



Interval selection with random forest 11

groups with more uneven sizes (including many groups with
only one variable in them). However, the group procedure
itself is always faster with adjclust.

4.4 Variation of performances in different
simulated scenarios

Figure 6 provides the precision and recall obtained under the
different simulation scenarios of Table 1.

As expected, a large number or a small size of ground truth
intervals tend to hinder the precision and sometimes the recall
as well (scenarios SC5, SC3, SC4 in the top left figure). On
the contrary, large intervals (SC1) are more difficult to identify
entirely and result in a smaller recall.

Intervals with opposite influence or with different effect
sizes (scenario SC6 and SC7) also lead to deteriorated results
in terms of both precision and recall. As expected, results are
improved by larger sample size but are only marginally im-
pacted by p (top right figure). The link function has a small
effect on the performance (second row, left) but the fact that
the relevant intervals are smooth (park1 and park2 in second
row, right) rather than piecewise constant makes it more diffi-
cult to identify the intervals properly. Note that park2 has two
intervals with opposite influences and (as for SC6) this leads
also to deteriorated precision and recall. Finally, as expected,
the level of the noise in simulations negatively impacts both
the precision and the recall (last row).

Overall, the method is less impacted by the number of
measurement points (p) or by the type of regression (F in
Equation 1) than by small sample size, noise level, or adverse
situations for S . In particular, it seems to be better suited to
detect a small number of impact intervals with similar effect
sizes and well distinct, in terms of their contribution to Y, from
the rest of the measurement points.

5 CONCLUSION

Motivated by the idea of selecting relevant intervals in a
functional regression framework, this paper proposes an in-
novative random forest approach. This approach is based on
three several steps: an automatic construction of intervals, the
computing of relevant summaries on these intervals, and an au-
tomatic selection of relevant intervals. Comparing variants for
each step on simulated and real datasets, we found that adjclust
/ PLS / boruta is a relevant combination in all cases and that
the selection step improves the performances of the approach.

In future works, we would like to investigate the use of the
multi-resolution results provided by SFCB. Indeed, SFCB is a
greedy algorithm that generates many different models (with
different numbers of intervals) and, then, selects the best model

in the sense of a given criterion. An alternative to model choice
would be to find a way to aggregate these different models.

SUPPORTING INFORMATION

All used datasets, along with scripts that were used to gener-
ate simulated data, are available at https://doi.org/10.57745/
KMH2GP.

The method described in this paper is implemented in the
function sfcb of the R package SISIR https://cran.r-project.
org/package=SISIR. The code used to perform the experi-
ments included in this article is available at https://forgemia.
inra.fr/sfcb/simus_sfcb.git along with resulting notebooks and
supplemental results and quality criteria.
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APPENDIX

DETAILED METHODS FOR HIERARCHICAL CLUS-
TERING
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Algorithm 1 Adjacency constrained hierarchical clustering (adjclust)

1: Initialization: I1 = {I(1)1 , . . . , I(1)p } where I(1)j = {tj}.
2: Define the ``distance'' between tj and tj+1 as the distance induced by the kernel K(tj, tj′) = Σjj′

(where Σ is given by Equation (2)):

D(tj, tj′) :=
√

K(tj, tj) + K(tj′ , tj′) – 2K(tj, tj′)

3: Set the linkage between I(1)j and I(1)j+1 as in Ward [63]:

δ(I(1)j , I(1)j+1) =
1

2
D2(tj, tj+1)

4: for t = 1 to p – 1 do
5: Merge the two contiguous clusters, I(t)

j∗ and I(t)
j∗+1 with minimal linkage value to obtain the

next partition It+1 = {I(t+1)
j }j=1,...,p–t

6: Update linkage values between contiguous clusters using the Lance-Williams formula [37]:

δ(I(t)
j∗–1, I(t)

j∗ ∪ I(t)
j∗+1) =

|I(t)
j∗ | + |I(t)

j∗–1|

|I(t)
j∗ | + |I(t)

j∗+1| + |I(t)
j∗–1|

δ(I(t)
j∗ , I(t)

j∗–1) +
|I(t)

j∗+1| + |I(t)
j∗–1|

|I(t)
j∗ | + |I(t)

j∗+1| + |I(t)
j∗–1|

δ(I(t)
j∗+1, I(t)

j∗–1)

–
|I(t)

j∗–1|

|I(t)
j∗ | + |I(t)

j∗+1| + |I(t)
j∗–1|

δ(I(t)
j∗ , I(t)

j∗+1)

7: end for
8: return {I1, I2, . . . , In}

Algorithm 2 Constrained clustering of variables (cclustofvar)

1: Initialization: I1 = {I(1)1 , . . . , I(1)p } where I(1)j = {tj}.
2: Set the homogeneity of any initial cluster to 1: H(I(1)j ) := 1

3: for t = 1 to p – 1 do
4: For any pair of contiguous clusters, I(t)

u and I(t)
u+1, compute the correlation matrix, C(t)

u ,
from (X(tj))tj∈I(t)

u ∪I(t)
u+1

: [C(t)
u ]jj′ =

Σjj′

σjσj′
, where σj is the empirical standard error of X(tj)

5: PCA step: Obtain the first eigenvalue of C(t)
u , λ

(t)
u and set H(I(t)

u ∪ I(t)
u+1) := λ

(t)
u

6: Merge the two contiguous clusters, I(t)
j∗ and I(t)

j∗+1 with minimal loss in homogeneity to obtain
the next partition It+1 = {I(t+1)

j }j=1,...,p–t:

H(I(t)
j∗ ) +H(I

(t)
j∗+1) –H(I(t)

j∗ ∪ I(t)
j∗+1)

7: end for
8: return {I1, I2, . . . , In}
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Algorithm 3 Relief algorithm for selection of summary variables (and corresponding intervals) (cclustofvar)
1: Initialization: Set SY, Sk,l, Sk,l,Y to 0.
2: ∀ i = 1, . . . , n, NN (i) is the set of U nearest neighbors of x̃(l)

i,k in (x̃(l)
i′,k)i′=1,...,n.

3: Compute distances between observations i and i′ ∈ NN (i) as

d(i, i′) :=
d1(i, i′)∑n
ℓ=1 d1(i, ℓ)

where d1(i, ℓ) = e–(Rank(i,i′)/σ)2 ,

with Rank(i, i′) the rank of i′ in the nearest neighbors of i.

4: Set Diff((k, l), i, i′) =
∣∣∣x̃(l)

i,k –x̃(l)
i′ ,k

∣∣∣
Rk,l

, with Rk,l the range of x̃(l)
.,k (maximum minus minimum)

5: for t = 1 to T do
6: Randomly select i ∈ {1, . . . , n}
7: for i′ ∈ NN (i) do
8: SY ← SY + |yi – yi′ |× d(i, i′) ▷ measures the typical distance between (yi)i

9: ∀ (k, l), Sk,l ← Sk,l + Diff((k, l), i, i′)× d(i, i′) ▷ measures the typical distance between (x̃(l)
i,k )i

10: ∀ (k, l), Sk,l,Y ← Sk,l,Y + |yi – yi′ |× Diff((k, l), i, i′)× d(i, i′)
11: end for
12: end for
13: return Scores: ∀ (k, l), RReliefF(k, l) := Sk,l,Y

SY
– Sk,l–Sk,l,Y

T–SY
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