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Abstract

This paper proposes an organized generalization of Newman and Girvan’s mod-
ularity measure for graph clustering. Optimized via a deterministic anneal-
ing scheme, this measure produces topologically ordered graph clusterings that
lead to faithful and readable graph representations based on clustering induced
graphs. Topographic graph clustering provides an alternative to more classical
solutions in which a standard graph clustering method is applied to build a
simpler graph that is then represented with a graph layout algorithm. A com-
parative study on four real world graphs ranging from 34 to 1 133 vertices shows
the interest of the proposed approach with respect to classical solutions and to
self-organizing maps for graphs.

Key words: Graph; Modularity; Self-organizing maps; Social network;
Deterministic annealing; Clustering

1. Introduction

Large and complex graphs are natural ways of describing real world systems
that involve interactions between objects: persons and/or organizations in social
networks, articles in citation networks, web sites on the world wide web, proteins
in regulatory networks, etc. [30]. However, the complexity of real world graphs
limits the possibilities of exploratory analysis: while many graph drawing and
graph visualization methods have been proposed [9, 21], displaying a graph with
a few hundred vertices in a meaningful way remains difficult.

A way to tackle this scalability issue is to simplify a graph prior its drawing.
This can be done by finding clusters of vertices via a graph clustering method
[42]: rather than representing the original graph, the visualization is restricted
to the clusters themselves. More precisely, the graph induced by the clustering
is used: each cluster forms a vertex, while edges between clusters are induced
by edges between the vertices they contain. As illustrated in the survey paper
[21], numerous implementations of this simple idea can be done, namely all the
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pairwise combinations between graph clustering methods and graph visualiza-
tion methods (see also, e.g., [11] for recent work on planar clustered graphs and
[5] for weighted graphs).

Rather than relying on a generic graph clustering algorithm, we propose in
this paper to build a clustering of a graph that is adapted to a visualization of the
graph induced by the clustering. We follow the general principal of topographic
mapping initiated by Prof. Kohonen with the Self Organizing Map (SOM, [26]):
a SOM builds a clustering of a dataset in homogeneous and separated clusters
that are in addition arranged on a geometrical structure chosen a priori ; points
assigned to close clusters in the prior structure are close in the original space.

Our method is built on an organized generalization of the popular mod-
ularity measure [34] for graph clustering. Following the SOM rationale, the
organized modularity uses a prior structure to build topologically aware clus-
ters: nodes assigned to close clusters in the prior structure are more likely to
be connected in the original graph than nodes assigned to distant clusters. As
for the SOM [45, 46], using a two dimensional regular grid as a prior structure
enables straightforward visualization of the graph induced by the clustering.

While the modularity has interesting properties over other graph cut mea-
sures [29, 31, 32, 33], especially in the visualization context [36], it has two
drawbacks shared with its organized generalization. Firstly, maximizing the
(organized) modularity is a combinatorial problem and there is no simple pro-
totype based alternating optimization scheme as available for the SOM and its
non Euclidean variants [4, 20, 47, 48]. Following [29] for the modularity, we rely
on a deterministic annealing approach [41] to solve this problem. Secondly, max-
imizing the (organized) modularity measure tends to miss small clusters, i.e., to
aggregate them in large clusters [13]. To limit this effect, we also propose to use
the intermediate states of the deterministic annealing algorithm to build finer
clusterings than the one with maximal organized modularity. Combined with
the prior structure, those clusterings give refined views of the graph induced
by the clustering. In summary our contribution is twofold: we introduce an
organized modularity measure and we use deterministic annealing to build fair
and simplified visualizations of a graph, that are based on a clustering of the
vertices.

The rest of this paper is organized as follows: Section 2 details the clustering
approach to graph visualization, recalls the modularity definition and introduces
its topographic generalization (the organized modularity). Section 3 presents
the deterministic annealing scheme used to optimize the organized modularity.
Section 4 describes the proposed graph visualization methodology and shows in
particular how to leverage the intermediate results of the optimization algorithm
to produce fuzzy layouts that limit the resolution effect induced by modularity
maximization. Section 5 analyses in detail the behavior of the proposed method
on a simple graph, Zachary’s Karate club social network [54]. Finally, Section
6 demonstrates the practical interests of the method on three larger real world
graphs. Technical derivations are gathered in an appendix.

2. Topographic graph clustering

2.1. Graph clustering for visualization
Cognitive scalability can be brought to graph visualization methods [21] via

graph clustering [42]: the rationale is to draw the smaller and hopefully simpler
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graph induced by the clustering instead of the original graph. Let us define
more precisely this idea.

We consider given a non oriented graph G with N vertices (or nodes),
V (G) = {1, . . . , N} and A weighted edges (A(G) is the set of edges). The (sym-
metric) weight matrix is denoted by W , and Wij is the non negative weight
between vertex i and vertex j (Wij = 0 when (i, j) 6∈ A(G)). A clustering of
V (G) into C clusters (Ck)1≤k≤C induces a new non oriented graph GC defined
as follows: each cluster is associated to a vertex in GC , i.e., V (GC) = {1, . . . , C}
and a pair (i, j) belongs to the edge set A(GC) if and only if there is (k, l) ∈ A(G)
such that k ∈ Ci and l ∈ Cj . GC is weighted and the corresponding weight ma-
trix is denoted WC . The weights are defined by WC

ij =
∑
k∈Ci,l∈Cj

Wkl (for
i 6= j).

The present paper focuses on the following graph visualization strategy: a
clustering C of the original graph G is constructed and a graph visualization
method is applied to GC . In general, the visual representation is completely
unaware of the way GC has been produced: this is a simpler setting than the
one of e.g. [5, 11] in which the proposed algorithms aim at representing a so-
called clustered graph. In this latter context, the ultimate goal is to visualize
the complete original graph in a way that respects the (hierarchical) clustering
structure. The clustering is used in this case both as a way to circumvent
algorithmic difficulties (e.g., the cost of some force directed methods) and as a
structural organization principle. In the present paper, the clustering method
makes “a meaningful coarse graining of the graph” (to quote [34]) and produces
a new graph which will be the main target of the visualization method.

The solution chosen in this paper is also related to but quite different from
the clustered layout strategy [21]. In this framework, one aims at producing a
visualization of a graph in which vertices that belong to a given cluster are close,
while distinct clusters remain separated. Clusters are generally a by product
of those algorithms rather than given beforehand (see, e.g., [35] for a recent
example of such a method).

In practice, we target visualization methods in which each vertex of the new
graph GC is represented by a glyph (e.g., a disk) while each edge is drawn
as a straight segment between the corresponding vertices’ glyphs (we do not
consider more sophisticated drawing, for instance with bends). Rendering hints
can be used to convey information about the original graph to the user: the
surface occupied by a glyph can be proportional to the size of the corresponding
cluster, while the thickness of a segment can encode the weight associated to
the corresponding edge.

2.2. Quality measures
In order to be useful, a graph visualization produced via the chosen clus-

tering framework must be both readable and faithful. The readability issue is
common to all graph visualization algorithms and has been a matter of research
and debate in the graph visualization community with a particular focus on
aesthetic criteria, such as bend minimization, symmetry, etc. [9, 21, 38]. Ex-
perimental studies show that a minimal number of edge crossings is one of the
most important quality criteria for readability (see e.g. [50]). Please note how-
ever that there is no consensus on what other readability criteria should be used
to evaluate the quality of a graph representation beyond direct task based user
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studies. In particular, neighborhood rank preservation measures used to assess
the quality of nonlinear projection methods [28] are likely to be irrelevant in the
graph context: as showed in [12], displaying the edges of a graph has a major
influence on the way proximities between nodes are inferred by users from the
visualization.

The faithfulness issue is more specific to the cluster based visualization: as
the final representation of the graph hides most of its structure, inference on the
drawing can be misleading. More precisely, there are two potential problems
induced respectively by the vertices and the edges in the GC graph. The first
difficulty is that the internal connectivity structure of clusters is hidden by the
glyph based representation: while color and/or shape hints could be used to
give an idea of the density of connections between the vertices that have been
put in a given cluster, the actual connection pattern is lost. A similar problem
happens for connection patterns between vertices of distinct clusters: as the
associated edges are summarized by a single edge between the induced vertices,
there is no way to infer how individual vertices are connected in the original
graph.

Therefore, building a faithful clustering of a graph amounts to balancing
two criteria that are somewhat contradictory: on the one hand, the density
of each cluster should be maximized, but on the other hand the connectivity
pattern between two vertices of distinct clusters should be independent of the
vertices. Intuitively, a dense cluster with a low outside connectivity is likely to
have a rather complex outside connectivity pattern: if all vertices in a cluster
were connected to e.g., a single outside vertex, then it might make sense to
assign this vertex to the cluster. In addition, enforcing a simple between cluster
connectivity has no reason to reduce edge crossing, while within cluster density
maximization should on the contrary reduce the number of between cluster
connection and therefore improve the readability of the graph.

It seems therefore natural to focus on within cluster density maximization
as this solution should lead to a readable graph with a controlled impact on the
faithfulness of the representation. Among the clustering quality criteria that
favor within cluster density (see [42]), we focus on the modularity introduced by
Newman and Girvan in [34]. Let us denote ki =

∑
jWij the degree of vertex i

and m = 1
2

∑
i,jWij the total weight of the graph. Then the modularity of the

clustering (Ck)1≤k≤C of G is

Q ((Ck)1≤k≤C) =
1

2m

C∑
k=1

∑
i,j∈Ck

(Wij − Pij) , (1)

where P is a N ×N symmetric matrix given by Pij = kikj

2m .
The rationale of the measure is to compare the weight of a link between two

vertices in a cluster, Wij , to a simple random model, Pij , in which the weights
are proportional to the degrees of the vertices and independent of the clusters.
A good clustering tends to cluster vertices that are more connected that one
expects based solely on the degrees of the vertices: this corresponds to Wij > Pij
and to higher values of Q(M). Maximizing the modularity tends therefore to
produce dense clusters, but only when they are meaningful as measured by a
deviation from the simple random model.

The modularity is a rather successful quality measure for graph clustering,
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especially compared to other graph cut like measures [29, 31, 32, 33]. In ad-
dition, [36] has recently shown that there is a strong link between clusterings
induced by modularity maximization and those obtained with some versions of
the clustered layout strategy described previously. The modularity seems there-
fore to be a good candidate for the topographic extension studied in this paper.
However, this measure suffers from a resolution problem [13]: maximizing the
modularity may fail to identify small but meaningful clusters of nodes. We will
tackle this problem by leveraging both the chosen optimization algorithm and
the prior structure introduced below (see Section 4.2 for details). It should be
noted in addition that the main concepts and techniques used in this paper are
quite independent from the actual quality measure. In particular most graph
cut based measures [42] could be handled in a similar way as we proceed with
modularity.

2.3. Organized modularity
The main limitation of graph clustering for visualization is that the two

phases of the methodology are generally completely independent: the clustering
method is not explicitly designed to help the subsequent visualization method.
We propose in this paper to address this limitation via a specific quality measure
for the clustering phase.

Following the SOM rationale, we derive an organized version of the mod-
ularity. We assume given a prior structure (in R2) which is represented by a
symmetric C by C matrix S of prior similarities between clusters such that
Skk = 1 for all k = 1, . . . , C. For instance Skl = exp(−σ‖xk − xl‖2) where xk
is the prior position of cluster Ck in R2. Then the organized modularity of the
clustering (Ck)1≤k≤C of G is

O ((Ck)1≤k≤C) =
1

2m

∑
i,j

Sc(i)c(j) (Wij − Pij) , (2)

where c(i) is the index of the cluster to which the vertex i is assigned.
In the standard modularity, the term Wij − Pij is taken into account only

when i and j belong to the same cluster. In the organized version, this term is
always taken in account, but with a weight Sc(i)c(j) equal to the prior similarity
between Cc(i) and Cc(j). This favors proximity in the prior structure for con-
nected clusters. If there are indeed significant connections between vertices in
two clusters Ck and Cl (i.e., Wij − Pij > 0), then the value of O will be higher
if Skl is high than if it is low. This is similar to the SOM principle in which a
prototype has to be close to observations assigned to its unit but also, to a lesser
extent, to observations assigned to neighboring units in the prior structure.

Maximizing O ((Ck)1≤k≤C) gives a graph clustering that can be used to
coarsen the original graph prior a standard visualization algorithm, as explained
in Section 2.1. In addition, the prior structure gives a natural layout for the
clustered graph: nodes of this new graph can be drawn at their corresponding
positions on the grid.

3. Organized modularity maximization

3.1. Modularity maximization
The main difficulty with (organized) modularity maximization is that it is a

discrete optimization problem for which there is no simple alternate minimiza-
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tion scheme (contrarily to the SOM or the k-means, for instance). Deriving
fast modularity maximization algorithms that produce acceptable solutions has
been an important research topic since the introduction of this quality measure
(this is generally the case for all graph clusteringing measures). The best com-
promise between computational load and quality seems to be currently achieved
by some type of heuristic algorithms that coarsen the graph in an iterative and
multi-level way [3, 37].

In the present paper, we use a quite different approach which is more adapted
to the organized modularity defined in the previous Section. Following [29], we
propose to maximize the (organized) modularity via a deterministic annealing
(DA) approach [41]. As pointed out in [29], the main advantage of DA over
simulated annealing (as used by, e.g., [40] in the graph clustering context) is
the speed of the former: deterministic annealing can use aggressive annealing
schedules with a relatively small number of iterations compared to simulated
annealing. In addition, intermediate results of DA can be used to limit the
resolution effect induced by modularity maximization, as will be shown in Sec-
tion 4.2.

To ease the derivation of the DA algorithm for modularity maximization,
we use an assignment matrix notation for clusterings. An assignment matrix M
for a clustering of {1, . . . , N} in C clusters is a N × C matrix with entries in
{0, 1} such that

∑C
k=1Mik = 1 for all i. In other words, Mik is equal to 1 if and

only if i is assigned to cluster Ck. We denote M the set of all valid assignment
matrices for a clustering of {1, . . . , N} in C clusters (N and C will be given
by the context). Please note that we do not constrain an assignment matrix to
have non empty clusters.

The modularity and the organized modularity of an assignment matrix M
are given respectively by:

Q(M) =
1

2m

∑
i,j

∑
k

MikMjk (Wij − Pij) (3)

O(M) =
1

2m

∑
i,j

∑
k,l

MikSklMjl (Wij − Pij) (4)

If B is the N ×N symmetric matrix defined by

Bij =

{
0 if i = j
1

2m (Wij − Pij) if i 6= j.
(5)

then, maximizing O(M) is equivalent to maximizing

F (M) =
∑
i,j

∑
k,l

MikSklMjlBij (6)

as shown in Section A.1. Finally, it should be noted that by using the identity
matrix for S, one recovers the modularity: the algorithm derived for the maxi-
mization of F (M) will therefore apply to both the standard modularity and the
organized version.

3.2. Deterministic annealing and mean field approximation
Deterministic annealing tries to solve the complex combinatorial problem of

maximizing a function F defined on a finite (but large) spaceM via an analysis
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of the Gibbs distribution obtained as the asymptotic regime of a classical sim-
ulated annealing [7, 24] or via the principal of maximum entropy [41]. In our
case, the Gibbs distribution for temperature 1

β is

P (M) =
1
ZP

exp(βF (M)), (7)

where the normalization constant ZP is given by ZP =
∑
M∈M exp(βF (M))

(the sum ranges over the full space M).
The main idea of DA is to compute the expectations of the assignment

matrix at a fixed temperature with respect to the Gibbs distribution, i.e., the
E (Mik), and then to decrease the temperature while tracking the evolution
of the expectations (in simulated annealing, the Gibbs distribution is sampled
rather than studied via expectation).

Unfortunately, F is not linear with respect to M and computing ZP and
P is therefore difficult: one should resort on an exhaustive exploration of M
which is computationally infeasible. Following previous work on similar topics,
we approximate P by a distribution that factorizes (see e.g., [18, 22]). This cor-
responds to approximating the interaction between say Mik and all the other
variables via a mean field Eik. Then we compute the expectation of the assign-
ment matrix with respect to the approximating distribution.

More precisely, we consider the bi-linear cost function U(M,E) =∑
i

∑
kMikEik where E is the mean field, a N by C matrix of partial assign-

ment costs. For a fixed temperature 1
β , we look for a mean field E that gives a

distribution R(M,E) = 1
ZR(E) exp(βU(M,E)) close to P (M), in the sense that

the Kullback-Leibler divergence KL(R|P ) between R and P is minimal, with
KL(R|P ) =

∑
M R(M,E) ln R(M,E)

P (M) (this corresponds to a variational approxi-
mation of P [23]).

At a minimum, the gradient ofKL(R|P ) with respect to E is zero. This leads
to the following classical mean field equations (see Appendix A.2 for details):

∂ER (F (M))
∂Ejl

=
∑
k

∂ER (Mjk)
∂Ejl

Ejk, ∀j, l. (8)

They are obtained using the main consequence of the mean field approximation,
namely the independence between Mik and Mjl for i 6= j under the distribution
R, i.e., the fact that ER (MikMjl) = ER (Mik) ER (Mjl) for i 6= j.

To solve the mean field equations, we use a EM-like approach. We consider
the ER (Mik) fixed and solve the equations for Ejl (maximization phase). Then
we compute the new values of the ER (Mik) (expectation phase). This latter
phase leads to the very simple standard deterministic annealing update rule:

ER (Mik) =
exp(βEik)∑
l exp(βEil)

. (9)

Moreover, the independence property recalled above gives

ER (F (M)) =
∑
i 6=j

∑
k,l

ER (Mik)SklER (Mjl)Bij .
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Then, some straightforward calculations (see Appendix A.3 for details) show
that equation (8) is fulfilled if the mean field is given by

Ejk = 2
∑
i 6=j

∑
l

ER (Mil)SklBij , (10)

or, in matrix notations, E = BER (M)S, using the symmetry of B and S.

3.3. Phase transition and final algorithm
It is well known that deterministic annealing goes through several phase

transitions when the temperature is decreased [17, 22, 41]. In order to choose
an adapted annealing schedule, i.e., an increasing series of (βl)1≤l≤L that is used
to track the evolution of ER (M), it is important to find at least the first phase
transition.

At the limit of infinite temperature (β = 0), it can be shown (see Appendix
A.4) that the following mean field

E0
jk =

2
C

∑
i6=j

Bij
∑
l

Skl, (11)

is a fixed point of the EM like scheme (i.e., of equations (9) and (10)). The
corresponding assignment expectations are uniform, i.e.

ER
(
M0
ik

)
=

1
C
. (12)

An analysis of the stability of the EM-like scheme (conducted in Appendix
A.4) shows that the fixed point E0 is stable when the temperature 1

β is higher
than the critical temperature T0 = 2λBλS

C , where λB and λS are the spectral
radii, i.e., the largest eigenvalues in absolute value, respectively of B and S.
The first phase transition will therefore happen when the temperature becomes
lower than this limit. It should be noted that the critical temperature is a very
conservative estimation of the temperature of the first phase transition, as it
corresponds to a worst case analysis of the stability of the fixed point.

Algorithm 1 Deterministic annealing for organized modularity maximization
1: initialize E to E0 from equation (11)
2: T0 ← 2λBλS

C {critical temperature}
3: T ← αT0

4: for l = 1 to L do {annealing loop}
5: E ← E + ε {noise injection}
6: repeat {EM-like phase}
7: compute ER (Mik) using equation (9) with β = 1

T
8: compute E using equation (10)
9: until convergence of E

10: T ← γT
11: end for
12: threshold ER (M) into an assignment matrix

To derive the final Algorithm 1, we follow [41] rather than [29]. We use in
particular the perturbation idea of [41]: each time the temperature is lowered,
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some noise is injected in the mean field before running the EM-like scheme.
This method favors phase transitions and symmetric breaks that are needed for
a proper convergence.

Deterministic annealing is very robust and quite insensitive to the parame-
ters that appear in Algorithm 1:

• L is the number of outer iterations, i.e., the number of temperatures con-
sidered during the annealing process (a typical value is N , the size of the
graph);

• α > 1 is the relative starting temperature above the critical temperature
(typically 1.1);

• γ is the damping factor of the temperature (typically chosen such that the
final temperature is 0.1T0);

• for the noise ε, we used a random multiplicative factor chosen uniformly
in [0.995, 1.005] for each component of E;

• the EM-like phase is considered to be stable when the mean squared dif-
ference between the components of two values of E is below the square
root of the machine precision (or after 500 iterations).

Finally, the computation cost of the algorithm remains reasonable: the costly
operation is the product BER (M). As explained in [31], one can leverage
the structure of B to obtain a fast matrix multiplication. Indeed B is made
from W the weight matrix and P the degree matrix. Computing Wx costs
O(A) operations (where A is the number of edges of the graph), while Px can
be computed in O(N) operations (N is the number of vertices) exploiting the
definition of P . Therefore computing BER (M) costs O(C(A + N)). Then
computing the product of BER (M) by S is a O(NC2) operation while applying
equation (9) costs O(NC). The total cost of one iteration of Algorithm 1 is
therefore O(CA+C2N). Computing the critical temperature can be done quite
efficiently via the Lanczos method [16] in O(N(A+N)) but in fact only a very
rough estimate of the spectral radius is needed. Therefore, a few iterations of
a power method should be enough to give a reasonable initial temperature. In
practice, the computational cost of the method makes it suitable for graphs with
a few thousands vertices as long as there are not too dense.

4. Graph visualization methodology

In principle, the proposed graph visualization methodology is rather straight-
forward and strongly related to e.g., exploratory data analysis with the SOM.
We choose a regular grid as a prior structure and use Algorithm 1 to find an
optimal clustering with respect to the organized modularity defined by equation
(4). Then, as explained in Section 2.1, we display the clustering induced graph:
we do not need a graph layout algorithm in this phase as each cluster has a
dedicated position in the grid.

In practice, some parameters need to be carefully chosen to provide a mean-
ingful visualization. In addition, (organized) modularity maximization faces a
problem of limited resolution and leads sometimes to oversimplified clustering
induced graph. We describe in this Section the proposed solutions to those
issues.
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4.1. Parameter tuning
The internal parameters of Algorithm 1 described in Section 1 do not re-

quest any particular tuning and the guidelines provided should in general give
satisfactory results. On the contrary, the quality of the visual representation
strongly depends on the prior structure, both in terms of the size of grid itself
and in terms of the S matrix. Those parameters should be optimize as automat-
ically as possible. The general principle consists first in defining a finite set of
acceptable prior structures and then in selecting the best one via some quality
criterion.

Our practical goal is to end up with readable graphs: we consider therefore
small prior structures, for instance square grids with an absolute maximum of
10 nodes per dimension (i.e., up to 100 clusters). The entries of the matrix S
are calculated via a SOM like equation

Sij = H(λ‖xi − xj‖), (13)

where xi is the position of cluster i in the prior structure and H is either H(t) =
exp(−t2) (exponential decrease) or H(t) = max(0, 1− t) (linear decrease). The
scaling parameter λ is used to tune the neighboring influence and can be chosen
so as to include from zero neighbor to a complete influence of all clusters on
each other.

Unfortunately, as recalled in Section 2.2, there is no universally accepted
quality criterion for graph visualization. Moreover, the case of clustered vi-
sualization naturally corresponds to a trade-off between internal and external
connectivity uniformity. To handle this trade-off we propose to rely on dual
objectives optimization principles. More precisely, we use the standard modu-
larity measure to assess clustering quality and the number of edge crossing to
assess visual quality. Rather than combining the measures to select one value of
the parameters of the prior structure, we consider Pareto optimal prior struc-
tures: each selected structure is better than all others for at least one of the two
criteria.

In practice, this means that the parameter tuning process is only semi-
automatic: it selects some interesting visualizations from the explored set of
parameters. Those visualizations can then be presented to the user for selec-
tion. As explained in Section 2.2, while the modularity is a clustering quality
criterion, it favors both dense clusters and low connectivity between clusters.
It is therefore reasonable to sort Pareto optima in decreasing modularity order
prior user analysis. However, limiting the results to the best prior structure
according to modularity will generally lead to oversimplified graphs because of
the limited resolution of this measure [13]: this justifies presenting to the user
Pareto optima with sub-optimal modularity but with more non empty clusters
and less edge crossings.

4.2. Fuzzy layout
In addition, one can leverage the annealing process to produce intermediate

results which can be considered as compromise between the main strategy and
the clustered layout strategy [35]. Indeed, as will be shown in Section 5, the
expectation of the assignment matrix ER (M) does not contain 0/1 values, even
after some phase transitions. The fuzzy layout strategy introduced in the present
section takes advantage of this fact.
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Let us denote (xk)1≤k≤C the positions associated to the C clusters in the
prior structure. The position of vertex i in the prior structure based layout
associated to the assignment matrix M is given by

pi =
∑
k

Mikxk,

and therefore, the expected position is

ER (pi) =
∑
k

ER (Mik)xk. (14)

At the limit of zero temperature, ER (M) contains only 0 and 1, and the expected
positions are exactly positions in the prior structure. However, during annealing,
vertices that are difficult to classify will have in-between positions reflecting non
peaked values of ER (Mik).

As a by product of the annealing scheme, one can therefore provide an ani-
mated rendering of the evolution of ER (M) by displaying for different values of
the temperature the N points (ER (pi))1≤i≤N (the display is somewhat similar
in principle to the posterior mean projection used in the Generative Topographic
Mapping [2]). To avoid cluttering the layout with overlapping vertices, we rely
on an elementary simplification scheme: a complete linkage hierarchical cluster-
ing is applied to the ER (pi) and the dendrogram is cut at an appropriate level
(for instance 5% of the minimal distance between the points of the grid). This
leads to a finer clustering than the final one, with associated positions for the
clusters. Many of those clusters are positioned near or on cluster positions on
the grid, especially when the annealing scheme nears completion. This induces
generally some overlapping between edges. To limit this effect, we use the posi-
tions computed above as initial positions of a force directed placement algorithm
(such as the Fruchterman-Reingold algorithm [15]). The algorithm is used only
for a few iterations that move slightly the clusters and reduce overlapping.

In practice, the user first browses through the Pareto optimal points sorted
in decreasing modularity order to select some interesting visualizations. Then
he/she can request an animated rendering of the most interesting graphs to
assess whether some sub-structure can be found in the clusters.

5. Detailed analysis of a small graph

This section provides a detailed analysis of the behavior of the proposed
method on a small graph. The method has been implemented in R [39], using
the igraph package [8] complemented by the network package [6].

We study Zachary’s Karate club social network [54]. The graph represents
the friendship social network between the 34 members of a Karate club at a
US university in the 70s. The graph contains 78 unweighted edges (its global
density, the fraction of connected pairs of nodes, is thus equal to 13.9 %) and is
represented on Figure 1 obtained with the Fruchterman-Reingold force directed
algorithm [15] as implemented in igraph [8]. The transitivity of the graph, that is
a measure of the probability that the adjacent vertices of a vertex are connected
(see e.g., [51]), is equal to 25.6 %. The gap between the global density and the
transitivity is a good indication for a larger local density and thus a relevant
clustering.
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Figure 1: Zachary’s Karate club social network
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5.1. Modularity maximization
It is well known from previous work on this graph that in terms of modularity,

the optimal number of clusters is four (see e.g., [10]). This is a consequence of
the structure of the modularity which tends to peak at a certain graph specific
number of clusters and then decreases (this is another manifestation of the
limited resolution of this measure [13]). For this graph, the social analysis
conducted by Zachary leads to the definition of two clusters which correspond
to the split between members of the club during the course of the study. Both
clusters are split into two sub-clusters by modularity maximization (one ground
truth cluster corresponds to clusters 1 and 4 in Figure 6 and the other to clusters
2 and 3). We have investigated the behavior of the deterministic annealing
algorithm with C ranging from 2 to 8. The parameters of the algorithm were
the following ones: α = 1.1, γ is chosen so that the final temperature is T0/10
and L = 151 (this relatively large value was used to obtained a convergence for
each EM-like phase; a faster annealing introduced instabilities on this graph).
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Figure 2: Maximal modularity achieved by DA as a function of C
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Figure 3: Evolution of the modularity during annealing (the solid line corresponds to the
theoretical temperature for the first phase transitions, dashed lines correspond to detected
transitions)
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As shown on Figure 2, the maximal modularity achieved by deterministic
annealing (without a prior structure) reaches its maximum at C = 4 clusters
and then remains constant (the value of the maximum is 0.4198, as reported
in e.g., [10]). This is an interesting feature of DA: the algorithm is able to
produce empty clusters if this increases the objective function. In the present
case, the algorithm produces a maximum of four non empty clusters, even if we
ask for eight. While this is interesting in terms of maximizing the modularity,
this tends to increase the resolution problems faced by this quality measure [13].
The fuzzy layout strategy proposed in Section 4.2 is therefore expected to be
very useful in this context.

Figure 3 shows the evolution of the modularity during annealing for the case
C = 4. More precisely, we compute the expectation of the modularity with
respect to the mean field distribution:

ER (Q(M)) =
∑
i6=j

∑
k

ER (Mik) ER (Mjk)Bij +
1

2m

∑
i

(Wii − Pii) (15)

The critical temperature appears, as expected, as a very conservative estimate
of the temperature of the first phase transition. This first phase transition
corresponds to the detection of two well identified clusters (the ones discovered
by Zachary in [54]), while the second phase transition introduces two additional
clusters. The evolution of the expectation of the assignment matrix ER (M) is
represented by Figures 4 and 5: each figure includes four copies of the graph. In
copy number k, the gray level of the node i encodes the value of ER (Mik), i.e., of
the probability for node i to belong to cluster k according to the approximating
distribution R. After the first phase transition, clusters 1 and 3 start to take
(partial) ownership of some of the vertices (the black ones on Figure 4), even
if only 6 vertices out of 34 have a maximal assignment probability higher than
0.75. More than 40% of the vertices (14 out of 34) have rather fuzzy assignment
probabilities (i.e., less than 0.5 for the maximal value). After the second phase
transition (shown on Figure 5), the algorithm has identified four distinct clusters
accounting for 23 vertices (which are all assignments to a cluster with more than
0.75 probability). Four vertices still have a maximal assignment probability
below 0.5. If the annealing is brought to the limit of a very low temperature
(below the threshold of T0/10 chosen here), the expectation of the assignment
matrix is almost a 0/1 matrix, but such effort is not needed: in the case of the
Karate club graph, all vertices have a maximal assignment probability higher
than 0.5 at T = T0/10 and a winner-take-all approach leads to a well defined
clustering of the graph.

Figure 6 compares the original layout numbered via the clustering to the
layout of the clustering induced graph (obtained by the Fruchterman-Reingold
force directed algorithm [15]). The induced graph emphasizes clearly the relation
between the clusters: cluster 2 is not directly connected to clusters 1 and 4, while
the connection between 3 and 4 is less dense than the ones between 1 and 3 or
4. The summary is therefore quite informative, even if, as expected, most of
the structure is lost. For instance, cluster 1 exhibits a start shape which is of
course lost in the glyph based representation.

5.2. Organized modularity maximization
For the organized modularity, we use the simplest setting compatible with

the four clusters identified in the previous section: the prior structure consists
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Figure 4: Assignment probabilities after the first phase transition: black corresponds to prob-
abilities close to one, white to probabilities close to zero
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Figure 5: Assignment probabilities after the second phase transition: black corresponds to
probabilities close to one, white to probabilities close to zero
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Figure 6: Left: original layout numbered according to the clustering; right: clustering induced
graph
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in a square in which each vertex is associated to a cluster. We use the following
influence matrix:

S =


1 λ λ 0
λ 1 0 λ
λ 0 1 λ
0 λ λ 0

 ,

where λ specifies the amount of local influence (there is no diagonal influence).
Interestingly, the value of λ has an impact on the number of non empty clusters
obtained by deterministic annealing. We use the same parameters for the algo-
rithm as in the previous section, while varying λ between 0 and 0.2. As shown
on Figure 7, a large influence tends to reduce the number of effective clusters
produced by the algorithm. This can be explained by an analysis of the opti-
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Figure 7: Number of non empty clusters as a function of the influence parameter λ

mal four clusters clustering obtained before. As shown on Figure 6, there is no
direct connection between cluster 2 and clusters 1 and 4. As a consequence, the
corresponding entries Bij are negative: the only way to prevent the organized
modularity to be smaller than the standard one is to put cluster 2 far away
from clusters 1 and 4 in the prior structure. This is not strictly feasible as there
are only two pairs of cluster positions with no direct influence in S (they corre-
sponds to the diagonal of the square). As a consequence, one might put cluster
1 far away from cluster 1 or from cluster 4, but not from both. Therefore, the
modularity will decrease by e.g.,

− 1
2m

∑
i∈C2,j∈C4

λPij ,

if cluster 2 has no influence on cluster 1. Then, when λ is large enough, the
reduction of the four clusters organized modularity will be high enough to bring
its value below the one of the two or three clusters standard modularity. Those
latter configurations are easier to arrange on the prior structure in a way that
minimizes negative contributions: they will be preferred by the algorithm over
the four clusters solution.

In fact, the behavior of the algorithm is comparable to the one of a force
directed method: when there is no connection between two vertices, they only
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1 4

2 3

Figure 8: clustering induced graph displayed on the prior structure

repel each other and the algorithm tries to maximize their distances. As shown
on Figure 8, the representation of the graph obtained via the prior structure is
quite similar to the one provide by Figure 6. The underlying clusters are com-
pletely identical and thus use the same numbering to ease comparison between
the figures (this is also the case when the value of λ induces a clustering with
two or three clusters: the obtained clusterings are the ones that maximize the
standard modularity for C = 2 or C = 3).

5.3. Fuzzy layout
It might seem from Figure 8 and more generally from the discussion above

that the organized modularity offers no particular interest compared to a two
phases approach with a maximal modularity clustering followed by a force di-
rected layout. The behavior of the DA algorithm on the Karate graph empha-
sizes the fact that the modularity does not increase with the number of clusters:
it tends to peak at an optimal graph specific number. As explained before,
there is a complex interaction between the prior structure and the values of the
modularity for different numbers of non empty clusters. In some situations, the
prior structure introduces a too strong coupling between clusters and leads this
way to a reduced number of non empty clusters. This might lead to a better
visualization of the graph, to an over simplification or to nothing more than the
two phases approach (Section 6 will illustrate this further).

The first way to address this problem is to test several prior structures and
to select optimal graphs with respect to different quality measures as proposed
in Section 4. A second (and complementary) approach consists in leveraging the
annealing process to limit the impact of the peaking behavior of the modularity
by means of the fuzzy layout strategy described in Section 4.2. An example of
such layouts is given by Figure 9. The representations give a more complete
picture of the graph than Figure 6 (or Figure 8). It appears for instance quite
clearly that two vertices are not easy to assign to the final four clusters (they
are at the boundary of cluster 1 in Figure 8). If we study carefully the original
representation on Figure 1 with the added knowledge provided by Figures 6 and
9, those vertices (number 10 and 24) appear quite clearly in between two clusters.
However, it would be almost impossible to obtain this information directly from
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initial layout after first phase transition

just before second phase transition just after second phase transition

during the final cooling phase final configuration

Figure 9: Evolution of the fuzzy layout during annealing (the Fruchterman-Reingold algorithm
was used to reduce edge overlapping)
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the original representation. Figure 9 shows also that the composition of cluster
3 (in Figure 8, bottom left in Figure 9) is quite obvious compared to others.
This is easily confirmed on Figure 6.

5.4. Comparison with SOM variants
As the proposed method is based on the SOM rationale, it seems natural

to compare it to SOM variants that can handle graph nodes, mainly the kernel
SOM with adapted kernels [47] and the spectral SOM [48]. Details on those
methods and on parameters optimization are postponed to Section 6.2 in order
to keep the present Section focused on a detailed analysis of the Karate graph.

Following the methodology described in Section 6.2, we have built Pareto
optimal points with respect to the modularity of the clustering and the number
of edge crossings in the induced layout. The only global Pareto optimal point
among SOM variants has been obtained by the heat kernel (see [27]). It has
zero edge crossing and a modularity of 0.4188. The obtained layout is identical
to one of Figure 8, up to a rotation. However, the underlying clustering is
slightly different, as shown by the reduced modularity. In fact, node number
10 on Figure 1 is assigned to the same cluster as node number 3 rather than to
node number 34’s cluster in the optimal clustering (in terms of modularity). It
turns out that node number 10 should be assigned to node number 34’s cluster
according to Zachary’s analysis. Therefore, the best SOM variant fails to recover
exactly the ground truth clustering, while modularity optimization does recover
a finer clustering.

Other variants make similar or worse mistakes. For instance, the best result
obtained by the modularity kernel SOM has a modularity of 0.409 which corre-
sponds to two differences with the optimal modularity clustering. Node number
10 is misclassified compared to Zachery’s two clusters ground truth, while node
number 24 is assigned to the correct Zachery’s cluster but to a different cluster
than in the highest modularity clustering.

The best solution for the Laplacian’s inverse kernel SOM has an even worse
modularity of 0.391. In this case, the differences between the proposed cluster-
ing and the ground truth are more important. Figure 10 gives the clustering
obtained by the Laplacian’s inverse kernel SOM on the full layout of the Karate
graph. Node number 3 is assigned to a wrong cluster according to the ground
truth. While the mismatch corresponds to only one node, the status of this node
is much more obvious than the one of node 10: it is connected to node number 1,
the central actor one of the clusters identified sociologically. In addition, cluster
number 4 seems to consist in boundary nodes rather than in a dense subset of
nodes. While this SOM variant manages to reach a fair approximation of the
ground truth clustering, it splits one of those clusters in a misleading way: clus-
ter 4 is not dense and its members are more connected to outside nodes than
between themselves.

In summary, the SOM variants are unable to recover exactly the ground
truth clustering obtained by Zachary on this graph. In addition, the SOMs give
an example of a clustering with reduced modularity (compared to optimal ones)
with a possibly misleading cluster: the subgraph is not dense and nodes have
more connections outside of the cluster than inside. Limitations of graph SOMs
compared to our proposal will be confirmed in the next Section.
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Figure 10: Original layout numbered according to the clustering obtained by the Laplacian’s
inverse kernel SOM

6. Results on larger graphs

6.1. Datasets
In order to confirm the conclusions reached in the previous section, the

following experiments provide a comparison between the proposed method, the
classical two phases approach and SOM variants on three larger graphs. More
precisely, the studied graphs are:

• a coappearance network of characters in chapters of the novel Les
Misérables (Victor Hugo), introduced by [25] and available at http:
//www-personal.umich.edu/~mejn/netdata/lesmis.zip. This graph
is undirected and weighted by the number of chapters in which each pair
of characters appear together. It is larger than the graph described in
Section 5 with 77 nodes representing the characters of the novel. The
global density of this graph is equal to 8.7% and its transitivity is equal to
49.9%. This indicates that the local connectivity of the graph is very high
compared to its global one and thus that this graph is likely to be clustered
into dense subgroups. This graph is represented in Figure 11 (this layout
has been obtained via the Fruchterman-Reingold force directed algorithm
[15] as implemented in igraph);

• a directed, weighted network representing the neural network of the worm
“C. Elegans”, introduced by [52] and available at http://cdg.columbia.
edu/cdg/datasets. The graph has been used as an undirected weighted
graph: the weights, (Wij), of the undirected graph are simply defined
from the weights (

−→
W ij) of the directed graph by Wij = Wji =

−→
W ij +

−→
W ji.

This graph is connected and contains 453 nodes. Its density is equal to
2.0% and its transitivity to 12.4%. Compared to the graph from “Les
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Misérables”, this network has a much smaller local connectivity indicat-
ing that the clustering task should be harder. Hence, a smaller modularity
is expected for the resulting clustering. This graph is represented in Fig-
ure 12 (left). While the graph from “Les Misérables” was readable, the “C.
Elegans” graph is impossible to decipher when rendered by the standard
Fruchterman-Reingold algorithm;

• a network representing the e-mail exchanges between members of the Uni-
versity Rovira i Virgili (Tarragona), introduced by [19] and available at
http://deim.urv.cat/~aarenas/data/xarxes/email.zip. This graph
is also connected and contains 1 133 nodes. Its global density is equal to
0.9% and its transitivity to 16.6%. As in the previous case, the transitiv-
ity of the graph is not very high but the gap between the global density
and the transitivity is much larger and a larger modularity than for “C.
Elegans” can then be expected. This graph is represented in Figure 12
(right) and is as undecipherable as the “C. Elegans” one when rendered
with the Fruchterman-Reingold algorithm.
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Figure 11: Coappearance network from “Les Misérables” (left: with characters’ names; right:
without label)

6.2. Experimental setting
6.2.1. Reference methods

The experiments compare the proposed method with two other approaches:
1. as explained in Section 2, the proposed approach tries to improve the

standard two phases approach by building topographically ordered clus-
ters. The reference approach consists therefore in a two phases method
already used in Section 5.1: we build a good clustering via determinis-
tic annealing maximization of the modularity and the graph induced by
the clustering is rendered via a force directed placement algorithm (the
Fruchterman-Reingold algorithm as implemented in igraph);
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Figure 12: Two real-world networks: Neural network of the worm C. Elegans (left) and E-mail
network between the members of the University Rovira i Virgili (right)

2. an alternative organized approach is the one described in [47]: Kohonen’s
Self Organizing Map algorithm is used to build a topographically ordered
clustering of the graph (on a prior grid) via a well chosen graph ker-
nel. Several popular kernels are defined for graphs, including regularized
versions of the Laplacian1 (see, e.g., [44]), the generalized inverse of the
Laplacian [14] or the modularity kernel [55]. The latter one is defined
from the positive part of the matrix B involved in the definition of the
modularity (see equation (5)).
A slightly different way to use the Self Organizing Map for clustering the
vertices of a graph is what is called “spectral SOM” in [48]. This approach
is inspired by spectral clustering (see e.g., [49]) but using a SOM instead
of the usual k-means algorithm. More precisely, the vertices of the graph
are represented by vectors of RC (where C is the initial number of clusters
of the prior grid) that are the coordinates of the eigenvectors associated to
the C smallest non zero eigenvalues of the Laplacian of the graph. Then,
a usual vector SOM is applied to these vectors.
Those four SOM variants were used in Section 5.4 for the Karate graph.

6.2.2. Parameters optimization
The parameters optimization procedure outlined in Section 4.1 is applied

to tunable parameters of the reference methods (e.g., the number of clusters,
the kernel and its parameters, etc.). Random initialization is included in the
procedure for methods that are not deterministic.

In the specific case of the two phases approach, we rely on a two phases opti-
mization: the best clustering is selected by maximization of the modularity over
the number of clusters and then the layout with the lowest number of crossing

1We recall that the Laplacian of a graph is the N × N matrix, L, defined by Lij =
−Wij if i 6= j
ki if i = j
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edges is kept among 10 different random initializations for the Fruchterman-
Reingold algorithm.

The other solutions are “all-in-one” and provide at the same time a cluster-
ing and a layout. We select therefore on Pareto optimal parameter sets. The
following parameters were optimized:

• the number of clusters for the clustering algorithm was optimally chosen
in {2, . . . , 25} (please note that all methods can produce empty clusters);

• the prior structure was encoded via a square grid selected among 3 sizes:
3 × 3, 4 × 4 and 5 × 5 (i.e., 9 clusters, 16 clusters and 25 clusters). The
vertices of the grid have integer coordinates;

• the entries of the matrix S were calculated via equation (13). We compared
exponential decrease and linear decrease, and used at least four different
scaling values, chosen according to the induced radius of influence in the
prior structure;

• in the case of the SOM (kernel version or “spectral SOM”), the optimal
configuration (size of the prior structure and neighborhood function) was
selected in the same set of configurations as for the organized modularity;

• as the batch SOM used in this paper exhibits some dependence to the
initial configuration, we used 5 different initializations for each run of the
algorithm. Among them 4 were random ones and the last one was a PCA
based initialization in which the prior structure is positioned on the plane
spanned by the first two principal components (this is done with kernel
PCA [43] in the case of kernel SOM and standard PCA in RC for the
spectral SOM);

• as explained above, we used three different kernels. Among them, only
the heat kernel has a parameter: it is defined as K = eβL where L is the
Laplacian of the graph and β a temperature parameter. Four values of β
were used;

We used the three kernels only for the analysis of “Karate” and “Les
Misérables”. For the two other graphs (C. Elegans and E-mail), we re-
stricted the analysis to the generalized inverse that has achieved almost
the best results in the first experiment (comparable with the best ones
obtained for the heat kernel) and that does not require the tuning of an
additional parameter.

6.3. Results and comments
6.3.1. Numerical results

We first compare the proposed method to the SOM variants with respect to
the chosen quality criteria: the modularity of the clustering and number of edge
crossings in the associated representation. As explained in Section 2 and 4.1,
those quality criteria have been chosen in order to obtain a good compromise
between a readable clustering based representation of the graph (with small
number of edges crossing) and the fairness of this representation (dense clusters,
i.e., high modularity). Figures 13 and 14 give the values of the quality criteria
for all the experiments made on the dataset “Les Misérables”, while Tables 1,
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2 and 3 give the pairs of values associated to Pareto points obtained in for
each graph. We first focus on “Les Misérables” and then give more general
comments. Please note that comments and conclusions about “Les Misérables”
apply to the Karate graph with the only exception that the modularity kernel
SOM performs in an acceptable way on the Karate graph. Detailed results are
not included to avoid lengthening the article.
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Figure 13: Quality criteria for the kernel and spectral SOM for “Les Misérables”: x axis is
the modularity and y axis is the number of edge crossings. The gray level of the points gives
the initial size of the square grid and Pareto points are indicated by a black star. Solutions
with a modularity lower than 0 or a number of edge crossings greater than 500 are omitted
on this figure.

As shown in Figures 13 and 14, the clusterings obtained on “Les Misérables”
by optimizing the soft modularity have generally larger modularity values than
those produced by SOM variants. In addition, only a limited subset of the
parameter space leads to high modularity with SOM variants. Both outcomes
were expected for kernel SOMs using the heat kernel and the generalized inverse
of the Laplacian. Indeed those kernels induce feature spaces and associated
clustering objectives that have no simple relation with the modularity criterion.
As shown in e.g. [4, 53] both kernels lead to interesting clustering results, but it
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Figure 14: Quality criteria for the optimization of the organized modularity by deterministic
annealing for “Les Misérables”. The gray level of the points gives the initial size of the square
grid and Pareto points are indicated by a black star.

is clear from the present results that one cannot expect to get high modularity
clustering from them in general.

The poor results for the spectral SOM are slightly less expected as this
method is related to some form of graph cut measure optimization, using the
relaxation proposed in spectral clustering [49]. However, as recalled in Section
2.2, graph cut measures are quite different from the modularity, which probably
explains the low modularity clusterings obtained by this method.

Finally, the results obtained by the modularity kernel are quite disappoint-
ing. Indeed, this kernel is strongly related to the modularity measure [55] and
should lead to some form of modularity maximization. In practice, it seems that
taking only the positive part of the B matrix does not capture all the complexity
of the modularity, at least in the SOM context.

Of course, as our method aims at maximizing an organized version of the
modularity, the higher quality of the results in terms of a closely related measure
(the classical modularity) is rather natural. However, the Figures show that it
also leads to a low number of edge crossings and therefore to more readable lay-
outs. Figure 13 shows in particular that SOM variants generally fail to balance
modularity and edge crossings: high modularity clusterings have frequently a
significant number of edge crossings (see also Table 1).

Combining both criteria lead to the search of Pareto points. The case of “Les
Misérables” is summarized by Table 1: when considered all together, the SOM
approaches (kernels and spectral) lead to 4 Pareto points which are of lesser
quality than the one obtained by the proposed approach: none of the Pareto
points for kernel SOM is a global Pareto point for the dataset mainly because of
low modularity values. In addition, and for similar reasons, the spectral SOM
and the modularity kernel SOM do not produce any Pareto point. In fact,
the only realistic competitive method in the SOM family is the kernel SOM
based on Laplacian’s inverse. Indeed, it gives comparable results as the ones
obtained with the heat kernel but without the need for a time consuming kernel
parameter tuning. The two larger datasets, “C. Elegans” and “E-mail” were
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Les Misérables
Method Number Modularity Nb of pairs Id

of clusters of cut edges
SOM (heat kernel) 52 (22) 0.5327 37 M1

32 (8) 0.5276 2 M2
SOM (Laplacian’s inverse) 32 (9) 0.5212 1 M3

32 (8) 0.5089 0 M4
Organized mod. (linear) 42 (7) 0.5638 1 M5
Organized mod. (Gaussian) 52 (7) 0.5652 3 M6

32 (6) 0.5472 0 M7
Modularity optimization 8 (5) 0.5472 0 M8

Table 1: Description of the Pareto points for each of the three methods (SOM, optimization
of organized modularity and optimization of ordinary modularity) applied to the dataset “Les
Misérables”. The number of clusters gives the number of clusters C used by the algorithm
and, in parenthesis, the number of non empty clusters obtained finally. The column “Id” is
used to identify the corresponding solution in the text; Pareto points within all solutions have
bold Id.

therefore investigated only with this kernel SOM, excluding all other variants.
Pareto points are described in Tables 2 and 3.

C. Elegans
Method Number Modularity Nb of pairs Id

of clusters of cut edges
SOM (Laplacian’s inverse) 32 (9) 0.3228 14 CE1

32 (9) 0.3000 7 CE2
32 (8) 0.2936 1 CE3

Organized mod. (linear) 42 (8) 0.4373 41 CE4
32 (7) 0.4348 27 CE5
32 (7) 0.4321 19 CE6

Organized mod. (Gaussian) 32 (8) 0.4063 15 CE7
Modularity optimization 18 (8) 0.4383 27 CE8

Table 2: Description of the Pareto points for each of the three methods (SOM, optimization
of organized modularity and optimization of ordinary modularity) applied to the dataset “C.
Elegans”. The number of clusters gives the number of clusters C used by the algorithm and,
in parenthesis, the number of non empty clusters obtained finally. The column “Id” is used
to identify the corresponding solution in the text; Pareto points within all solutions have bold
Id.

Results from “C. Elegans” and “E-mail” generally agree with those obtained
on “Les Misérables”: the kernel SOM does not produce clusterings with high
modularity, but it manages sometimes to reach a low number of edge intersec-
tions in the induced layout. That said, the kernel SOM does not produce global
Pareto points for “Les Misérables” and “E-mail”: on those datasets, it is there-
fore strictly less efficient than the proposed method on the dual objectives point
of view (this was also the case for the Karate graph). The best situation for
the kernel SOM is “C. Elegans” where the very low numbers of edge crossings
of configurations CE1, CE2 and CE3 make them Pareto points within the full
set of solutions. However, those points have very low modularities compared to
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other solutions.

E-mail
Method Number Modularity Nb of pairs Id

of clusters of cut edges
SOM (Laplacian’s inverse) 42 (16) 0.4652 218 E1

32 (9) 0.4566 49 E2
32 (9) 0.4540 24 E3
32 (9) 0.4420 22 E4
32 (9) 0.4242 19 E5

Organized mod. (Gaussian) 32 (8) 0.5694 47 E6
42 (8) 0.5693 44 E7
42 (7) 0.5554 25 E8
32 (7) 0.5456 23 E9
52 (6) 0.5401 11 E10

Modularity optimization 11 (8) 0.5736 56 E11

Table 3: Description of the Pareto points for each of the three methods (SOM, optimization
of organized modularity and optimization of ordinary modularity) applied to the dataset “E-
mail”. 11 Pareto points have been found for the kernel SOM but 6 of them are omitted in
the table because of a very low modularity (less than 0.2). The number of clusters gives the
number of clusters C used by the algorithm and, in parenthesis, the number of non empty
clusters obtained finally. The column “Id” is used to identify the corresponding solution in
the text; Pareto points within solutions have bold Id.

In summary, those experiments show that the spectral SOM and the modu-
larity kernel SOM should be avoided as they cannot produce satisfactory results
in terms of the chosen quality criteria. In addition, while the heat kernel can
produce interesting results, its additional kernel parameter induces a large com-
putational cost: as shown on Figure 13 most of the computing efforts are wasted
as they lead to poor solutions on both criteria. The only competitive method
is the Laplacian’s inverse kernel SOM. But even if it seems to be the best SOM
based method, it still produces sub-optimal solutions on both criteria for three
out of four datasets.

The comparison between the classical two phases approach and our method
does not lead to a clear winner as far as the chosen quality criteria are con-
cerned. As expected, the modularities of the clusterings obtained in the two
phases approach are among the highest. Interestingly, maximizing the orga-
nized modularity can lead to a higher modularity than a more direct approach
(in a similar way as the SOM which can overcome the k-means in term of
within cluster variance): this is the case for “Les Misérables” (see Table 1).
However, in general, the two phases approach gives the clusterings with the
highest modularity. In term of edge crossings, the two phases approach gives
also satisfactory results: this confirms the analysis from Section 2.2, where we
argued that looking for dense clusters should reduce the number of edges be-
tween clusters. On complex graphs however, our method leads to lower numbers
of edges cuts: again, this confirms the somewhat contradictory nature of the
two quality criteria explained in Section 2.2.

By construction, the two phases approach should give a Pareto optimal re-
sult, up to sub-optimal optimization results caused by the combinatorial nature
of both optimization problems. In practice, we obtained Pareto points on all
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graphs. In general, those points have higher modularity and higher number of
edge crossings than the ones produced by our method, as expected: our clus-
ters are somewhat adapted to the clustering induced layout. There is therefore
no obvious superiority of one method over the other. In fact, we are more in-
terested in the final layout of the graphs than in the exact numerical results.
It is therefore interesting to study the visual representations obtained different
approaches, as long as they correspond to Pareto optimal points. This is done
in the next subsection.

6.3.2. Drawing the graph from its clustering
The aim of the proposed method is to provide a simplified but relevant

representation of a large graph through the graph induced by the clustering.
The present section analyses the visual representation obtained via the proposed
method and reference methods. We first start with a detailed analysis of “Les
Misérables”: Figure 15 gives the representation of the graph of clusters for
clusterings M5 and M8 (See Table 1).
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Figure 15: Clustering induced graphs. Left: displayed on the prior structure (for M5 obtained
by optimizing the organized modularity) and Right: displayed by Fruchterman and Reingold
algorithm (for M8 obtained by optimizing the ordinary modularity).

As the graph is small enough, those layouts can be compared to the original
layout numbered according to the clustering: this is provided by Figure 16.
The density of the graph limits the possibilities of analysis, but it appears
clearly that cluster 1a from M5 corresponds to a quite isolated character (Mother
Plutarch who is only connected to Mabeuf), while up to a single character
(Sister Simplice), the union of clusters 2a and 2b in M5 gives cluster 2 in M8.
In both cases, the summary of the graph given by the clustering seems therefore
reasonable and a more detailed analysis is needed.

It turns out that both representations give a clear understanding of the story
of the novel. It is based on a central group of characters (clusters 2a and 2b for
M5 and 2 for M8) which includes Valjean, Cosette and Marius (among others).
Several sub-stories are narrated in the novel: the story of the Bishop Myriel
who is spiritual guide of Valjean (clusters 5); the story of the street children
Gavroche (clusters 1 in M5 and 1b in M8); and finally the story of Fantine, poor
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Figure 16: Original layout of “Les Misérables” labeled according to the clustering; left: M5
(optimization of the organized modularity) and right: M8 (optimization of the ordinary mod-
ularity). The number on the vertices is the cluster’s number.

Cosette’s mother (clusters 4). But representation M5 gives another information
by separating the main characters into the ones related to Valjean (Cosette,
Marius, Javert, etc. in cluster 2b) and the ones related to the Thénardier
family (mister and misses Thénardier, Éponine, their daughter, etc. in cluster
2a). In addition, cluster 2b of M5 (the main characters) has more connections
to cluster 1b than cluster 2a (Thenardier family) to cluster 1b. Therefore,
the central position of cluster 2b remains clearly emphasized in M5, even if
the representation is arguably slightly less readable than representation M8 (it
should be noted that the graph induced by the clustering M5 is planar, but
because the organized layout is not optimized by a graph drawing algorithm,
the actual representation has one edge crossing). Hence, with a small (and
avoidable) increase in the number of edge crossings but with a higher quality
of clustering, the information given by clustering M5 provides a more complete
picture of the original network.

Additional insights can be gained with the help of the fuzzy layout method-
ology described in Section 4.2. Figure 17 gives an example of such layout for the
final configuration of the deterministic annealing. At first, this representation
might seem very different from M5 on Figure 15. In fact most of the differences
can be explained by two phenomenons. Firstly, as on Figure 9 for the Karate
graph, some nodes are difficult to assign to a given cluster and appear therefore
in intermediate position. This explains the presence of some small clusters in
between larger ones : this is the case, for example, of the small cluster at the ex-
treme right of the Figure who is Javert, the policeman who is pursuing Valjean
(one of the character of the larger cluster just above the small isolated one).
But this character is also very related to the Thénardiers’ family (larger cluster
below the small isolated one) because they capture and imprison him at the end
of the novel. The small cluster situated between the large central cluster and
the cluster at the bottom left part of the map is also interesting. It contains
3 characters that act as connections between several secondary characters and
the rest of the graph: these characters belong to cluster number 5 in clusterings
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Figure 17: Fuzzy layout of the final configuration of “Les Misérables” (the Fruchterman-
Reingold algorithm was used to reduce edge overlapping)

M5 and M8.
The second source of differences between M5 and the fuzzy layout is that

several characters are extremely difficult to assign to a cluster and have therefore
almost flat assignment probabilities ER (Mik) even at low temperature. Then,
the corresponding nodes assume an almost barycentric position in the fuzzy
layout: this explains the presence of a central node in Figure 17. The characters
assigned to this central node are not connected and this cluster should not be
seen as a meaningful one. On the contrary, it contains very isolated characters
who belong to clusters 5, 2 or even 1 in clustering M8. All these characters have
in common to share only a (small weighted) connection with another character
of the network. They are very secondary characters in the novel. None of those
ambiguities could have been detected on a standard two phases approach or on
the SOM variants.

In addition, the SOM variants obtain poor results on this graph. As shown
in Table 1 they do not provide any global Pareto optimal points. Therefore it
is not very surprising to obtain unsatisfactory visual representations from those
methods. Figure 18 represents the results associated to clustering M1 in Table 1
(obtained with the heat kernel SOM). The resulting clustering has numerous non
empty clusters and leads to a quite cluttered visual representation. In addition,
some clusters seems completely arbitrary: for instance clusters number 5, 10,
11, 13 and 16 are a seemingly random clustering of the characters related only
to the Myriel characters. The global impression is that the heat kernel SOM
suffers from a tendency to build too fine clusterings on a somewhat arbitrary
basis.

The cluster and layout obtained by the Laplacian’s inverse kernel SOM are
given on Figure 19. Results are quite different from those of the heat kernel
SOM. Indeed, the clustered layout is very easy to read as there are no edge
crossing. However, the rather low modularity of M1 (see Table 1) is an indica-
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Figure 18: Representation of the M1 clustering obtained with the heat kernel SOM on the
original layout (left) and via the prior structure (right)
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tion that clusters are not as dense as for clusterings M5 and M8. In fact, the
representation of M1 clustering on the original layout of the graph shows that
the associated visualization is quite misleading. For instance, cluster 3 contains
Mother Plutarch while its unique connection in the graph, Mabeuf, is in cluster
6. Therefore cluster 3 is not even connected. A similar problem can be seen in
cluster 2. Then the main underlying assumption of the clustering induced layout
is not fulfilled: some clusters are not dense at all and are then meaningless.

This thorough analysis of “Les Misérables” confirms results on the Karate
graph (Section 5) and the numerical analysis from the previous section. The
analysis leads to two important conclusions. Firstly, the relevance of modularity
and of edge crossings is confirmed: the rather poor results obtained by SOM
variants in terms of numerical results correspond either to layouts that are
difficult to read (see Figure 18) and/or to misleading clustering (see Figures 18
and 19). Secondly, the proposed methodology leads to a better understanding
of the graph than the two phases approach by means of different clusterings
(induced by the organized modularity maximization) and via the fuzzy layout
methodology.

The sizes of “C. Elegans” and “E-mail” graphs make them difficult to analyze
in details. We provide therefore only some qualitative comparisons of the layouts
obtained by the investigated methods.

Figure 20 gives four layouts of the graph “C. Elegans” obtained from a subset
of Pareto points of Table 2:

• CE1 is the layout obtained by kernel SOM with the highest modularity
(chosen to avoid misleading clusterings);

• the CE8 is the layout obtained by the two phases approach and is induced
by the clustering with the highest modularity;

• CE6 and CE7 are the two Pareto points obtained by our method: CE7
has the smallest modularity but also a smaller number of edge crossings
within this two solutions. These two solutions have a high modularity
(larger than 0.4) and the modularity of CE6 is very close to those of CE8
but with a smaller number of edge crossings.

Despite a very small number of edge crossings, CE1 is poorly informative:
three clusters (3, 6 and 8) contain more than 80 % of the vertices of the graph
and the other clusters are thus very small compared to the three largest ones.
The small clusters are then not very informative and their existence probably
explains the poor modularity of the clustering. In fact, all solutions provided
by kernel SOM for this dataset share the same problem with some large clusters
and some very small ones. This type of behavior is neither specific to the chosen
graph, nor to the Laplacian’s inverse kernel as shown on Figure 19 and in [4]
for the heat kernel.

CE8 shows another type of layout problems: the graph induced by the clus-
tering is almost a complete graph (up to cluster 10, the graph is complete). The
only information conveyed by this layout is that nodes in cluster 10 are only
connected to nodes in cluster 9. The width of the edges can be used to infer
that some clusters are only loosely connected (e.g., 12 and 14), but grasping the
general organization of the graph is quite difficult with this layout.

CE6 and CE7 both have a slightly smaller modularity than CE7 but they are
easier to read because of a smaller number of edge crossings. Their clustering
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Figure 20: Clustering induced graphs for the “C. Elegans” dataset. Top left: displayed on
the prior structure (for CE1 obtained by kernel SOM); Top right: displayed by Fruchterman
and Reingold algorithm (for CE8 obtained by maximization of the modularity); Bottom:
displayed on the prior structure (for CE6 and CE7 obtained by maximization of the organized
modularity).
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qualities are higher than the one of CE1 (with a modularity larger than 0.4 and
less imbalance between the clusters’ sizes), comparable for CE6 to the one of the
clustering obtained in the two phases method CE8. Therefore, CE6 (and to a
lesser extent CE7) is almost as faithful as CE8 but gives some understanding of
the structure of the graph because the resulting simplified graph is not complete.
As expected, a small reduction in clustering quality can lead, in some situations,
to clusters that are more adapted to visual exploration. This validates again
the principle of integrating the clustering process and the layout process.
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Figure 21: Fuzzy layout during the final cooling phase for the solution CE6 of “C. Elegans”

In addition, fuzzy layouts such as the one provided in Figure 21 can be
used to analyze how clusters are built during annealing. In the particular case
of solution CE6, the layout shows that, e.g., cluster 8 is formed at the end
of the annealing. The analyst can investigate first the associated nodes and
their connection pattern to outside clusters, or on the contrary, focus his/her
attention on well established clusters.

Finally, Figure 22 provides two layouts of the graph “E-mail”. We chose to
represent the solution obtained by the two phases approach (E11, see Table 3)
and the Pareto point obtained by our method with the smallest number of edge
crossings (E10).

As in the previous example, the solution provided by the optimization of
the organized modularity, despite a clustering quality that is slightly worse,
gives a more understandable simplification of the graph than the dual phases
approach. In fact, the graph associated to E11 is complete and one has to
rely on the width of the edges to try to infer the importance of the relations
between clusters. The layout associated to E10 seems therefore easier to grasp.
In addition, the associated fuzzy layout (see Figure 23) shows that most of the
clusters are well defined and identifies a few nodes that are difficult to assign to
clusters. Further investigations could target those nodes.
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Figure 22: Clustering induced graphs for the “E-mail” dataset. Left: displayed on the prior
structure (E10 obtained by maximization of the organized modularity); Right: displayed by
Fruchterman and Reingold algorithm (E11 obtained by maximization of the modularity).

6.3.3. A brief summary of the experiments
Several conclusions can be drawn from the experiments conducted on the

four real world graphs. Firstly, maximizing the organized modularity leads
to good solutions with a high modularity and a acceptable number of edge
crossings. In some situations, maximizing the organized modularity actually
gives a higher modularity clustering, in a similar way to what can be observed
for the SOM versus the k-means. However, the main gain is a better trade off
between modularity and readability of the clustering induced graph: we trade
a small reduction in modularity for either a larger number of clusters (limiting
the general tendency of the modularity to pick up a small number of clusters) or
a reduced number of edge crossings (or both). All in one, organized modularity
maximization brings therefore simplified representations of graphs that seem
more informative than the standard two steps approach. In addition, as the
modularity is almost optimal, the representations provided by maximization of
the organized modularity are reasonably faithful, especially compared to the
low quality results generally obtained by graph adapted SOM. While the final
layout obtained by the organized modularity are not perfect (it is quite clear for
instance that the left graph on Figure 15 is planar and could be rendered with no
edge crossing), their ordered and regular nature makes them very readable. In
conclusion, we consider that a good practice consists in combining our method
to the two phases approach to get different and complementary views on the
same graph. A future implementation challenge is to provide linked multi-views
[1] of a graph that would give the analyst a visual comparison method between
those views.

In addition, relying on deterministic annealing provides a path in the clus-
tering space that is worth exploring via intermediate fuzzy layouts. The main
advantage of those layouts is to increase the number of clusters and to pro-
viding hints on the final assignment of vertices. Atypical vertices are clearly
pinpointed with this approach and can be further studied by the analyst. Our
use of the fuzzy layout was quite limited in this paper as we believe they should
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Figure 23: Fuzzy layout during the final cooling phase for the solution E10 of “E-mail”

be provided in an interactive environment in which the analyst can navigate in
the algorithm results. Further studies are needed to validate the interest of the
concept. In addition, as those layouts are closer to clustered layouts than the
rest of our work, comparisons with those latter methods (e.g., [35]) would be
interesting.

Those results show that the combination of modularity maximization and
edge crossings minimization is very well adapted to graph visualization. Then,
it is quite natural to observe that SOM variants are not adapted to the targeted
application. The analysis of the Karate graph has shown that they are not able
to recover the ground truth clustering. The graph “Les Misérables” showed quite
strong limitations of the clustering obtained by SOM variants (with meaningless
clusters) without any particular gain in term of readability of the clustering
induced graph. This was confirmed on “C. Elegans” in terms of layout and on
“E-mail” via quality criteria.

7. Conclusion

We have proposed in this paper a new organized modularity quality measure
for graph clustering inspired by the topographic mapping paradigm initiated by
Prof. Kohonen’s SOM. The organized modularity aims at producing a clustering
of a graph that respects constraints coming from a prior structure. This prior
structure is then used to display the clusters in an ordered way. A deterministic
annealing scheme has been derived to maximize efficiently the organized mod-
ularity. Its iterative nature can be leveraged to provide intermediate layouts of
the graph that emphasize the progressive construction of the final clustering,
pinpointing sub clusters, atypical vertices, etc.

An experimental study conducted on four real world graphs ranging from
34 to 1 133 vertices has shown that the proposed method outperforms similar
approaches based on adaptation of the SOM to graph data both in term of
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clustering quality and in term of readability of the clustering induced graphs.
The proposed method gives also better or complementary results compared to a
two steps approach in which one first build a graph clustering that maximizes the
standard modularity and then uses a graph visualization algorithm to display the
clustering induced graph. Finally, the computational cost of the whole approach
(which includes optimization of an influence parameter in the prior structure)
remains acceptable and is compatible with graphs with a few thousands of nodes.
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A. Derivations of the deterministic annealing algorithm

A.1. Equivalence between O and F
We have

O(M) = F (M) +
1

2m

∑
i

∑
k,l

MikSklMil (Wii − Pii) .

Then, as M is an assignment matrix, Mik is non zero (and equal to one) only
when k = c(i) and therefore

O(M) = F (M) +
1

2m

∑
i

Sc(i)c(i) (Wii − Pii)

= F (M) +
1

2m

∑
i

(Wii − Pii) ,

as Skk = 1 for all k. Therefore O(M) − F (M) is independent of M and maxi-
mizing F is equivalent to maximizing O.

A.2. Mean field equations

Let us denote KL(E) = KL(R|P ) =
∑
M R(M,E) ln R(M,E)

P (M) . At a mini-
mum of KL, the partial derivatives ∂KL

∂Ejl
must be equal to zero. Those deriva-

tives can be computed easily from the definition of R(M,E). We fist note that

KL(E) =
∑
M

R(M,E) lnR(M,E)− β
∑
M

R(M,E)(F (M)− logZF )

=
∑
M

R(M,E) lnR(M,E)− βER (F (M)) + β logZF .

We therefore need to compute ∂
∂Ejl

(
∑
M R(M,E) lnR(M,E)). We have

∂U(M,E)
∂Ejl

= Mjl,

and
∂ exp(βU(M,E))

∂Ejl
= βMjl exp(βU(M,E))
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As ZR(E) =
∑
M exp(βU(M,E)), we have

∂ZR(E)
∂Ejl

= β
∑
M

Mjl exp(βU(M,E))

= βZR(E)ER (Mjl) .

Therefore, recalling R(M,E) = exp(βU(M,E))
ZR(E) , we have

∂R(M,E)
∂Ejl

= −exp(βU(M,E))
Z2
R(E)

∂ZR(E)
∂Ejl

+
1

ZR(E)
βMjl exp(βU(M,E))

= β (Mjl − ER (Mjl))R(M,E).

Then∑
M

lnZR(E)
∂R(M,E)
∂Ejl

= lnZR(E)β
∑
M

(Mjl − ER (Mjl))R(M,E)

= 0,

because ZR(E) does not depend on M and by definition of ER (Mjl). Moreover,∑
M

∂ lnZR(E)
∂Ejl

R(M,E) =
∑
M

βZR(E)ER (Mjl)
ZR(E)

R(M,E)

= βER (Mjl) ,

and therefore

∂

∂Ejl

(∑
M

lnZR(E)R(M,E)

)
= βER (Mjl) ,

which leads to

∂

∂Ejl

(∑
M

R(M,E) lnR(M,E)

)
=

∂

∂Ejl

(
β
∑
M

U(M,E)R(M,E)

)
−βER (Mjl) .

By definition of U(M,E), we have∑
M

U(M,E)R(M,E) =
∑
M

∑
ik

EikMikR(M,E)

=
∑
ik

EikER (Mik) .

Then, by independence, ∂ER(Mik)
∂Ejl

= 0 when j 6= i. Indeed we have :

∂ER (Mik)
∂Ejl

=
∑
M

Mik
∂R(M,E)
∂Ejl

= β
∑
M

Mik (Mjl − ER (Mjl))R(M,E)

= β (ER (MikMjl)− ER (Mik) ER (Mjl))
= 0.
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The final equality comes from independence of Mik and Mjl under R when i 6= j
(this simplification is the motivation for using a bi-linear cost function U and
therefore a distribution R that factorizes).

Finally, we have

∂

∂Ejl

(∑
M

U(M,E)R(M,E)

)
= ER (Mjl) +

∑
k

∂ER (Mjk)
∂Ejl

Ejk,

and therefore

∂KL(E)
∂Ejl

= β

(∑
k

∂ER (Mjk)
∂Ejl

Ejk −
∂ER (F (M))

∂Ejl

)
,

from which we obtain the mean field equations (8).

A.3. Expectation minimization scheme
We need to compute ∂ER(F (M))

∂Ejl
starting from

ER (F (M)) =
∑
u 6=v

∑
k,t

ER (Muk)SktER (Mvt)Buv.

As shown above, when j 6= i, ∂ER(Mik)
∂Ejl

= 0 and therefore when u 6= j and v 6= j,

∂ (ER (Muk) ER (Mvt))
∂Ejl

= 0.

Then
∂ER (F (M))

∂Ejl
=

∑
u6=v

Buv
∑
k,t

Skt
∂ (ER (Muk) ER (Mvt))

∂Ejl

=
∑
u6=j

Buj
∑
k,t

SktER (Muk)
∂ER (Mjt)
∂Ejl

+
∑
v 6=j

Bjv
∑
k,t

SktER (Mvt)
∂ER (Mjk)

∂Ejl

= 2
∑
u 6=j

Buj
∑
k,t

SktER (Muk)
∂ER (Mjt)
∂Ejl

,

using the symmetry of B and S for the last equation. Then if for all j and k,
we set the values of Ejk to

Ejk = 2
∑
i 6=j

∑
l

ER (Mil)SklBij ,

we have obviously∑
k

∂ER (Mjk)
∂Ejl

Ejk = 2
∑
k

∂ER (Mjk)
∂Ejl

∑
i 6=j

∑
t

ER (Mit)SktBij

= 2
∑
i 6=j

BijBij
∑
k,t

SktER (Mit)
∂ER (Mjk)

∂Ejl

=
∂ER (F (M))

∂Ejl
,

and the mean field equations are fulfilled.
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A.4. Fixed point analysis
Finding the mean field E via the EM-like scheme given by equations (9)

and (10) corresponds to looking for a fixed point of the following matrix valued
function:

Gjk(E) = 2
∑
i6=j

Bij
∑
l

Skl
exp(βEil)∑
p exp(βEip)

. (16)

The stability of a fixed point E0 can be analyzed with a first order Taylor
expansion (where ‖.‖F is the Frobenius norm)

Gjk(E1) = Gjk(E0) +
∑
u

∑
t

∂Gjk
∂Eut

(E0)
(
E1
ut − E0

ut

)
+ o(‖E1 − E0‖F ),

which recalls that the stability is governed by the eigenvalues of the NC ×NC
Jacobian matrix

(
∂Gjk

∂Eut

)
(j,k),(u,t)

.

Obviously, ∂Gjk

∂Ejt
= 0. When u 6= j, we have

∂Gjk
∂Eut

= 2Buj
∑
l

Skl
∂

∂Eut

(
exp(βEul)∑
p exp(βEup)

)

=
2Bujβ exp(βEut)(∑

p exp(βEup)
)2

(
Skt
∑
p

exp(βEup)−
∑
l

Skl exp(βEul)

)

= 2βBujER (Mut)

(
Skt −

∑
l

SklER (Mul)

)

At the limit of infinite temperature (when β = 0), equation (9) leads to
ER (Mjk)0 = 1

C , and therefore for the high temperature fixed point E0,

∂Gjk
∂Eut

(E0) =
2Bujβ
C

(
Skt −

1
C

∑
l

Skl

)
,

while equation (10) gives in addition

E0
jk =

2
C

∑
i6=j

Bij
∑
l

Skl.

Let us denote H = S(I − 1
C1) the centering matrix (I is the C × C identity

matrix and 1 is the C×C matrix with all terms equal to 1). Using the symmetry
of S, we have

∂Gjk
∂Eut

(E0) =
2Bujβ
C

Htk.

Then, using the symmetry of B, this leads to∑
u

∑
t

∂Gjk
∂Eut

(E0)∆ut =
2β
C

(B∆H)jk,

for any N×C matrix (∆ut)ut. Let λS denote S’s largest eigenvalue (in absolute
value if S is not positive) and let λB denote B’s largest eigenvalue (also in
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absolute value). Let δ be a vector of RC , then ‖δTS‖2 ≤ λS‖δ‖2 (where ‖.‖2 is
the Euclidean norm). As I− 1

C1 has eigenvalues 1 and 0, ‖δTH‖2 ≤ λS‖δ‖2. In
addition, if µ is a vector in RN , ‖Bµ‖ ≤ λB‖µ‖. Then ‖B∆H‖F ≤ λSλB‖∆‖F .
Then

‖G(E1)−G(E0)‖F ≤
2βλSλB

C
‖E1 − E0‖F + o(‖E1 − E0‖F ).

Therefore, when the temperature 1
β is higher than 2λBλS

C , ‖G(E1)−G(E0‖F <
‖E1 − E0‖F and therefore the fixed point E0 is stable: small perturbations
vanish.
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