Reconstruction quality of a biological network when its
constituting elements are partially observead
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Application framework: impact of selecting genes on network inference
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Research questions: Evaluate the impact of gene sampling on the estimation of network

Theoretical framework: Gaussian Graphical Model framework
Gene expression: X ~ N(0,X), sample size: n, number of genes: p and X = (Xp, Xg), with X not observed.

non-zero entries of S = X! & edges of full graph

Influence of: How to estimate the errors?

e compare to a graph whose links reflect path existence in the “true” graph
(induced)

e ratio of missing variables r

Questlons: e missing node context: ran-

dom or peculiar nodes (e.g.
big/small degree or large /small
betweenness)

e compare to a graph inherited from edges of the “true” graph only
(projected)

e compare to a graph learnt from complete data

Method 1 (naive approach) |Experimental setup \

graphical Lasso [1] on observed data Tests on simulated data sets:

e data simulated according to a GGM with p = 100 genes

Yo =S — Sou(Sgr)~'S
0O N OH—(HB,[)_HO/ e sample size: n = 100 and 1, 000

to be estimated biais

e ratio of missing variables: » = 0 (full graph), 5%, 10%, 20%

Method 2: CPW-S+L [2] and 30%

Question of identifiability of the 2 components of 2510 e missing node “context”: with large/low degree, high /low or

at random.
e sparse Spoop and .
(10 replicate networks)
e low-rank Spo (SHH) —1 Syo
— via an algebraic study of sparse and low-rank matrix varieties. Selected results: precision vs. recall curves
More specifically: ~ transversality of tangent spaces 7T.(Soo) and
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