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Application framework: impact of selecting genes on network inference
Ideal network inference

−→ −→
true biological network observations transcriptomic data estimation predicted network

(unknown) (from full data)
Inference with missing nodes

−→ −→
projected biological network observations transcriptomic data estimation ??? predicted network ???

with gene selection (incomplete) (from partial data)

red edges:
false positive

blue edges:
false negative

Research questions: Evaluate the impact of gene sampling on the estimation of network
Theoretical framework: Gaussian Graphical Model framework
Gene expression: X ∼ N (0,Σ), sample size: n, number of genes: p and X = (XO, XH), with XH not observed.

non-zero entries of S = Σ−1⇔ edges of full graph

Questions:

Influence of:

• ratio of missing variables r

• missing node context: ran-
dom or peculiar nodes (e.g.
big/small degree or large/small
betweenness)

How to estimate the errors?

• compare to a graph whose links reflect path existence in the “true” graph
(induced )

• compare to a graph inherited from edges of the “true” graph only
(projected )

• compare to a graph learnt from complete data

Method 1 (naive approach)
graphical Lasso [1] on observed data

Σ−1
OO = SOO︸︷︷︸

to be estimated

−SOH(SHH)−1SHO︸ ︷︷ ︸
biais

Method 2: CPW-S+L [2]
Question of identifiability of the 2 components of Σ−1

OO:

• sparse SOO and

• low-rank SOO(SHH)−1SHO

→ via an algebraic study of sparse and low-rank matrix varieties.
More specifically: transversality of tangent spaces T∗(SOO) and
T?(SOH(SHH)−1SHO) � statistical identifiability.
Assumptions:

• sparsity = few non-zeros per column/row � no dense subgraph.

• SOH(SHH)−1SHO has row/column spaces not too aligned with coordi-
nate axes � marginalisation effect over XH ’s is “spread out” over many
XO’s.

penalised likelihood method leads to consistent estimate via:

̂(SOO, SOH(SHH)−1SHO) = argmin
(S,L),S−L�0,L�0

−l(S−L,ΣOO)+λ [γ‖S‖l1 + tr(L)]

with l(S,Σ) = log det(S)− tr(SΣ) + c, the GGM log-likelihood.

Experimental setup
Tests on simulated data sets:

• data simulated according to a GGM with p = 100 genes

• sample size: n = 100 and 1,000

• ratio of missing variables: r = 0 (full graph), 5%, 10%, 20%
and 30%

• missing node “context”: with large/low degree, high/low or
at random.

(10 replicate networks)

Selected results: precision vs. recall curves

(precision = TP
TP+FP

, recall = TP
TP+FN

)
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