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Abstra
t

In some appli
ations and in order to address real-world situations better, data

may be more 
omplex than simple numeri
al ve
tors. In some examples, data


an be known only through their pairwise dissimilarities or through multiple

dissimilarities, ea
h of them des
ribing a parti
ular feature of the data set.

Several variants of the Self Organizing Map (SOM) algorithm were intro-

du
ed to generalize the original algorithm to the framework of dissimilarity

data. Whereas median SOM is based on a rough representation of the proto-

types, relational SOM allows representing these prototypes by a virtual linear


ombination of all elements in the data set, referring to a pseudo-eu
lidean

framework. In the present arti
le, an on-line version of relational SOM is in-

trodu
ed and studied. Similarly to the situation in the Eu
lidean framework,

this on-line algorithm provides a better organization and is mu
h less sen-

sible to prototype initialization than standard (bat
h) relational SOM. In a

more general 
ase, this sto
hasti
 version allows us to integrate an additional

sto
hasti
 gradient des
ent step in the algorithm whi
h 
an tune the respe
-

tive weights of several dissimilarities in an optimal way: the resultingmultiple

relational SOM thus has the ability to integrate several sour
es of data of dif-

ferent types, or to make a 
onsensus between several dissimilarities des
ribing

the same data. The algorithms introdu
ed in this manus
ript are tested on

several data sets, in
luding 
ategori
al data and graphs. On-line relational

SOM is 
urrently available in the R pa
kage SOMbrero that 
an be down-

loaded at http://sombrero.r-forge.r-proje
t.org/ or dire
tly tested on

its Web User Interfa
e at http://shiny.nathalievilla.org/sombrero.
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Dissimilarity, Graph, Categori
al Time Series

1. Introdu
tion

In many real-world appli
ations, data 
an not always be des
ribed by a

�xed set of numeri
al attributes. This is the 
ase, for instan
e, when data

are des
ribed by 
ategori
al variables or by relations between obje
ts (i.e.,

persons involved in a so
ial network). This issue 
an be even tri
kier when the

data are 
omposed of several sour
es of non homogeneous information (e.g., a

so
ial network together with attributes on the nodes as in [1, 2℄). A 
ommon

solution to address this kind of issue is to use a measure of resemblan
e (i.e.,

a similarity or a dissimilarity) that 
an handle 
ategori
al variables, graphs

or fo
us on spe
i�
 aspe
ts of the data, designed by expertise knowledge

[3℄. Many standard methods for data mining have been generalized to non

ve
torial data, re
ently in
luding prototype-based 
lustering, even though,

in some 
ases, the 
hoi
e of the most relevant dissimilarity remains an open

issue (see [4, 5℄ for a dis
ussion on this topi
 in the �eld of so
ial s
ien
e).

The re
ent paper [6℄ provides an overview of several methods that have been

proposed to ta
kle 
omplex data with neural networks.

In parti
ular, several extensions of the Self-Organizing Map (SOM) algo-

rithm have been proposed. One approa
h 
onsists in extending SOM to 
ate-

gori
al data by using a method similar to Multiple Corresponden
e Analysis,

[7℄. Another approa
h uses the median prin
iple whi
h 
onsists in repla
-

ing the standard 
omputation of the prototypes by an approximation in the

original data set. This prin
iple was used to extend SOM to dissimilarity

data in [8℄. One of the main drawba
ks of this approa
h is that for
ing the

prototypes to be 
hosen among the data set is very restri
tive; in order to

in
rease the �exibility of the representation, [9℄ proposes to represent a 
lass

by several prototypes, all 
hosen among the original data set. However this

method in
reases the 
omputational time, while prototypes remain restri
ted

to the original data set and may generate possible sampling or sparsity issues.

An alternative to median-based algorithms relies on a method that is


lose to the standard algorithm used in the Eu
lidean 
ase. This method is

based on the idea that prototypes may be expressed as linear 
ombinations

of the original input data. In kernel SOM framework, this setting is made

natural by the use of the kernel, whi
h maps the original data into a (large

dimensional) Eu
lidean spa
e (see [10, 11, 12℄ for on-line versions and [13℄
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for the bat
h version). Several kernels may then be used to handle 
omplex

data su
h as strings, nodes in a graph or graphs themselves [14℄. In some


ases, the data are solely des
ribed by a dissimilarity matrix. [15, 16, 17℄

give ne
essary and su�
ient 
onditions for a symmetri
 matrix to be a dis-

tan
e matrix in an Eu
lidean spa
e but, as pointed out by [3℄, the 
lass of

similarity/dissimilarity that 
an be embedded in a Eu
lidean spa
e is rather

limited and does not a

ommodate on a number of useful measures already

developed in the literature. In this 
ase, [18, 19, 20, 21℄ propose to introdu
e

an impli
it �
onvex 
ombination� of the original data in order to extend the


lassi
al bat
h versions of SOM to dissimilarity data: this approa
h impli
-

itly uses the embedding of the original data in a pseudo-eu
lidean spa
e, as

de�ned in [22℄.

However, bat
h versions of the SOM algorithm are known, at least for the

standard numeri
al SOM [23℄, to present several drawba
ks su
h as poor orga-

nization and strong dependen
y on the prototype initialization. This problem

may be partially 
ountered using PCA or MDS initializations, but when no

good initialization is available, a sto
hasti
 (also 
alled on-line) version of the

algorithm 
an be very bene�
ial. The purpose of the present paper is to intro-

du
e and justify the on-line version of relational SOM, as already proposed in

[24℄. Su
h an approa
h leads to a better organization of the map. Addition-

ally, taking advantage of the sto
hasti
 s
heme, relational SOM is extended to

integrate several sour
es of non homogeneous information by using an adap-

tive 
onvex 
ombination of dissimilarities. The weights of ea
h dissimilarity

are updated during the SOM learning pro
ess by an additional sto
hasti
 gra-

dient des
ent step. In the remaining of this manus
ript, Se
tion 2 des
ribes

the on-line extension of the relational SOM algorithm, already studied in

[24℄, while Se
tion 3 des
ribes how this approa
h 
an be used to integrate

multiple information 
oming either from di�erent data sets or from di�erent

dissimilarity measures. Finally, Se
tion 4 illustrates the approa
h on simu-

lated and real-world data sets and 
ompares it with previous literature. Note

that the on-line relational SOM is available in the R [25℄ pa
kage SOMbrero,

whi
h 
an be downloaded on R-Forge [26℄

1

or tested on its shiny [27℄ Web

User Interfa
e at http://shiny.nathalievilla.org/sombrero.
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2. On-line dissimilarity SOM

Let us re
all that the Self-Organizing Map (SOM) algorithm aims at

mapping n input data x1, . . . , xn into a low dimensional grid 
omposed

of U units. A prototype pu, valued in the same spa
e as the input data, is

asso
iated to ea
h unit u ∈ {1, . . . , U} of the grid. The grid indu
es a natural
distan
e d on the map: for every pair of neurons (u, u′), d (u, u′) is usually
de�ned as the length of the shortest path between u and u′

(although other

topologies are sometimes used, in
luding the standard Eu
lidean distan
e on

the grid). The algorithm aims at 
lustering together similar observations and

also at preserving the original topology of the data set on the map (i.e., 
lose

observations are 
lustered into 
lose units on the map, distant observations

are 
lustered into distant units on the map). In order to do so, an iterative

pro
ess is performed by alternating two steps. The original algorithm for

numeri
al ve
tors may be resumed as follows:

• an assignment step where one observation (on-line version) or all ob-

servations (bat
h version) is/are a�e
ted to the 
losest prototype (in

the sense of the Eu
lidean distan
e):

f(xi) = arg min
u=1,...,U

‖xi − pu‖,

• a representation step where all prototypes are updated a

ording to the

new assignment. For the on-line version of the algorithm, this step is

performed by mimi
king a sto
hasti
 gradient des
ent s
heme:

pnewu = poldu + µH (d (f(xi), u))
(
xi − poldu

)
, (1)

where H is the neighborhood fun
tion verifying the assumptions H :
R

+ → R
+
, H(0) = 1 and limx→+∞H(x) = 0, and µ is a training

parameter. Generally, H and µ are supposed to be de
reasing with the

number of iterations during the training pro
edure.

The original SOM algorithm des
ribed above does not posses a 
ost fun
-

tion and is not exa
tly a gradient des
ent, at least not in the 
ontinuous


ase. However, when the size of the neighborhood is �xed and with a modi-

�ed assignment step, [28℄ proved that SOM is minimizing the following energy

fun
tion:
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E ((pu)u) =

U∑

u=1

∫
δu,f(x)

U∑

l=1

H(d(l, u))‖x− pl‖
2P (dx) ,

where δu,f(x) =

{
1, if f(x) = u
0, otherwise

.

2.1. SOM for dissimilarity data

In the 
ase where the input data take values in an arbitrary input spa
e G,
a natural Eu
lidean stru
ture is not ne
essarily asso
iated with G. Instead,
the dissemblan
e between the observations 
an be des
ribed by a dissimilarity

measure ∆ = (δij)i,j=1,...,n su
h that ∆ is non negative (δij ≥ 0), symmetri


(δij = δji) and null on the diagonal (δii = 0). In this 
ase however, the

assignment step 
annot be 
arried out straightforwardly sin
e the distan
es

between the input data and the prototypes are not be dire
tly 
omputable.

Several extensions of the SOM algorithm have been proposed in this 
on-

text: [8℄ proposes the �median SOM� where the prototypes are 
hosen among

the input data (xi)i in a bat
h framework. The assignment step is then similar

to the Eu
lidean framework, with the dissimilarity repla
ing the Eu
lidean

norm. The representation step simply �nds the prototypes that minimize

the energy of the map by an exhaustive sear
h among the input data. [9, 29℄

extend this work by using several observations instead of a unique one for

ea
h prototype and by proposing a fast implementation of the algorithm.

Nevertheless, 
hoosing the prototypes among the input data is very restri
-

tive and using several observations for ea
h prototype strongly in
reases the


omputational time needed to train the map.

To over
ome this di�
ulty, the solution proposed by [18, 19, 20, 21℄ is to

rely on the pseudo-eu
lidean framework: indeed, [22℄ pointed out that any

data des
ribed by a symmetri
 dissimilarity matrix 
an be embedded in a

spa
e 
onsisting of the orthogonal dire
t sum of two Eu
lidean spa
es, for

whi
h the inner produ
t operation is de�nite positive on the �rst spa
e and

de�nite negative on the se
ond. Relying on this framework, and similarly

to the kernel SOM approa
h [19℄, the prototypes are supposed to be sym-

boli
 
onvex 
ombinations of the original data (a
tually, 
onvex 
ombinations

of their impli
it embedding in the pseudo-eu
lidean spa
e): pu ∼
∑

i βuixi
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with

∑
i βui = 1 and βui ≥ 02. If βu denotes the ve
tor (βu1, . . . , βun), the

�distan
e� in the assignment step 
an be written in terms of ∆ and βu only:

δ(xi, pu) ≡∆iβu −
1

2
βT
u∆βu. (2)

where ∆i is the i-th row of ∆ (the formula is justi�ed and proved in

Appendix A). This algorithm, 
alled relational SOM, was proposed in the

bat
h framework where the representation step 
onsists in updating the 
on-

vex 
ombination by a mean 
al
ulation:

βui =
H(d(f(xi), u))∑
i′ H(d(f(xi′), u))

.

This approa
h is very similar to the bat
h kernel SOM des
ribed in [12,

13℄. In kernel SOM, the Eu
lidean framework is justi�ed by the de�nition

of a kernel K : G × G → R that impli
itly maps the data into a Hilbert

spa
e where the inner produ
t is dire
tly available via the kernel. A
tually,

bat
h kernel SOM and bat
h relational SOM are equivalent for a dissimilarity

de�ned from the kernel by:

δ(xi, xj) := K(xi, xi) +K(xj , xj)− 2K(xi, xj). (3)

Re
ipro
ally, if the dissimilaritymatrix∆ 
an be embedded in a Eu
lidean

spa
e (i.e., if it ful�lls the 
ondition given in [15, 16, 17℄ whi
h is that the

matrix with elements sij = (δ(xi, xn)
2 + δ(xj , xn)

2 − δ(xi, xj)
2) /2 is positive,

or, similarly, if the matrix with elements

s(i, j) = −
1

2

(
δ2(xi, xj)−

1

n

n∑

k=1

δ2(xi, xk)−
1

n

n∑

k=1

δ2(xk, xj) +
1

n2

n∑

k,k′=1

δ2(xk, xk′)

)

as proposed in [30℄, is positive), then relational SOM is equivalent to kernel

SOM used with the matrix (sij)ij, whi
h, in this 
ase, is a kernel. However,

as explained in [3℄, some useful dissimilarities (e.g., shortest path lengths in

graphs or optimal mat
hing dissimilarities for sequen
es of events, [31, 32℄)

2

Note that this sum has no real meaning, most of the times, as G is not ne
essarily

equipped with a + operation neither with a multipli
ation by a s
alar. It simply impli
itly

refers to the + operation in the underlying pseudo-eu
lidean spa
e: the formal de�nition

of pu is given in Appendix A.
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do not ful�ll the required 
onditions allowing them to be embedded in a

Eu
lidean spa
e. In these 
ases, the dissimilarity 
an be turned into a kernel

using various pre-pro
essings, as des
ribed in [33℄ but then, relational SOM

and kernel SOM are no longer identi
al.

2.2. On-line relational SOM

As explained in [23℄, although bat
h SOM possesses the ni
e properties of

being deterministi
 and of usually 
onverging in a few iterations, it has several

drawba
ks su
h as organizing the map rather poorly, produ
ing unbalan
ed


lasses and being strongly dependent on the initialization. Hen
e, using

the same ideas as [18, 20℄, we introdu
e the on-line relational SOM, whi
h

generalizes the on-line SOM to the 
ase of dissimilarity data. The proposed

method is des
ribed in Algorithm 1. In this algorithm, only one observation,

Algorithm 1 On-line relational SOM

1: For all u = 1, . . . , U and i = 1, . . . , n, initialize β0
ui su
h that β0

ui ≥ 0 and∑n

i β
0
ui = 1.

2: for t=1,. . . ,T do

3: Randomly 
hoose an input xi

4: Assignment step: �nd the unit of the 
losest prototype

f t(xi)← arg min
u=1,...,U

((
βt−1
u ∆

)
i
−

1

2
(βt−1

u )T∆βt−1
u

)

5: Representation step: ∀ u = 1, . . . , U ,

βt
u ← βt−1

u + µ(t)H t(d(f t(xi), u))
(
1i − βt−1

u

)

where 1i is a ve
tor with a single non null 
oe�
ient at the ith position,

equal to one.

6: end for

randomly 
hosen, is assigned to a unit of the map at ea
h iteration step. The

representation step is drawn from Equation (1) by using a similar approa
h

to update the prototypes' 
oordinates (βui)ui. Note that the 
onstraints on

(βui)ui are preserved sin
e:

•
∑

i β
t
ui = 1 (as demonstrated in Appendix B);
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• βt
ui ≥ 0 for any u and i as long as µ(t) is small enough (µ(t)H t

must

simply be smaller than 1).

This latter 
ondition is easy enough to handle. In our experiments, the

parameters of the algorithm are 
hosen a

ording to [34℄: the neighborhood

H t
de
reases in a pie
ewise linear way, starting from a neighborhood whi
h


orresponds to the whole grid up to a neighborhood restri
ted to the neuron

itself; µ(t) vanishes at the rate of 1/t.

2.3. Dis
ussion on the algorithm: relations to previous algorithms, 
omplex-

ity and 
onvergen
e

If the dissimilarity matrix is a Eu
lidean distan
e, then the on-line rela-

tional SOM is exa
tly identi
al to the standard numeri
al SOM as long as the

prototypes of the original SOM are initialized in the 
onvex hull of the origi-

nal data (i.e., the initial prototypes 
an be written p0u =
∑

i β
0
uixi). Similarly,

the on-line relational SOM is identi
al to on-line kernel SOM as des
ribed in

[10, 11, 12℄ for a dissimilarity de�ned from a kernel K by Equation (3) or if

the dissimilarity ful�lls one of the 
onditions in [15, 16, 17℄.

Moreover, if one wants to generalize dissimilarities to non-symmetri
 re-

lations (su
h as, for example, graph-based 
omparisons of protein �ngerprint

graphs), a dissimilarity matrix 
omputed as the half-sum of pairwise relations

may be 
onsidered as the input for the algorithm.

In order to illustrate the performan
es of the on-line relational SOM 
om-

pared to the bat
h implementation, 500 points are 
onsidered, sampled ran-

domly from the uniform distribution in [0, 1]2. The dissimilarity is 
omputed

as the length of the shortest path in the graph indu
ed by the Delaunay

triangulation (this graph is displayed in Figure 1). Note that this dissim-

ilarity is not exa
tly equivalent to the Eu
lidean R
2
-metri
, sin
e it is not

even Eu
lidean. The bat
h version of relational SOM and the on-line version

of relational SOM were trained on identi
al 10 × 10 grid stru
tures. The

algorithms were trained either with identi
al initializations, or with a PCA

initialization

3

for the bat
h SOM, whi
h is the standard initialization used to

alleviate the initialization dependen
y of this algorithm. Results are available

in Figure 1 and 
learly show a mu
h better organization of the prototypes

in the �nal grid provided by the on-line version of the algorithm. When the

3

Dissimilarity PCA was used and then properly re-s
aled to satisfy the 
ondition∑
i
βui = 1.
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Figure 1: 500 points sampled from the uniform distribution in [0, 1]2 and their Delaunay

graph (top left) and map organizations obtained by relational on-line SOM (top right)

and relational bat
h SOM (bottom left) with random initialization and by relational bat
h

SOM with dissimilarity-PCA initialization (bottom right).

prototypes are initialized with a PCA, the organization of the map produ
ed

by the bat
h kernel SOM is mu
h better but still slightly worse than the one

obtained with the on-line version and a random initialization. This visual

e�e
t is 
on�rmed when 
al
ulating the topographi
 error [35℄: this error

quanti�es the 
ontinuity of the map with respe
t to the input spa
e metri


by 
ounting the number of times the se
ond best mat
hing unit of a given

observation belongs to the dire
t neighborhood of the best mat
hing unit for

this observation. A topographi
 error equal to 0 means that all se
ond best

mat
hing units are in the dire
t neighborhood of the winner neurons and

thus that the original topology of the data is well preserved on the map. In

this simple example, it is equal to 0.01 for the on-line relational SOM, to

0.176 for the bat
h relational SOM with PCA initialization and to 0.264 for

the bat
h relational SOM with random initialization. Hen
e, the 
lassi
al

initialization dependen
y of the bat
h version of the algorithm, as already

9



shown in [23℄ also holds for the relational approa
h. In parti
ular, when

no good initialization is present (i.e., when PCA or MDS are bad initializa-

tion strategies), the on-line version 
an then be very bene�
ial. Finally, the


omplexity of the on-line and bat
h versions are similar (of order O(Un2))
with usually a smaller number of iterations needed to stabilize the bat
h ver-

sion: the 
onvergen
e of the bat
h version is attained with quadrati
 speed

while the on-line version 
onverges with a linear speed. However, the better

organization of the map 
ompensates for this small loss in 
omputational

time. Finally, let us remark that formally speaking, in the pseudo-Eu
lidean

setting, the 
onvergen
e of both algorithms (on-line and bat
h) is even not

guaranteed (saddle points 
an be present instead of lo
al optima, as pointed

out in [21℄) but, in pra
ti
al appli
ations, divergen
e was never observed.

3. Integrating multiple dissimilarities

In some spe
i�
 appli
ations, the user is interested in simultaneously an-

alyzing several sour
es of information: a graph together with additional in-

formation known on its nodes, numeri
al variables measured on individuals

together with fa
tors des
ribing these individuals... This situation is often

referred to as �multiple view� data and su
h data are quite 
ommon in a

number of �elds: gene 
lustering from expression pro�les and ontology infor-

mation [36℄ in biology, node 
lustering in a so
ial network taking into a

ount

attributes that des
ribe the nodes [37, 1℄ in so
ial s
ien
es, and mole
ules


lustering from �ngerprints and spatial stru
tures [38℄ in 
hemistry. In other

spe
i�
 appli
ations, the data set 
an be des
ribed by several dissimilarities,

ea
h en
oding spe
i�
 features of the data but none of them being a
knowl-

edged as more informative than the others: in so
ial s
ien
es for instan
e,

the 
hoi
e of a good dissimilarity to des
ribe the resemblan
e between two

event time series is still an open issue [4, 5℄.

The 
ombination of all sour
es of information or of several dissimilarities is

a 
hallenging problem that aims at in
reasing the relevan
e of the 
lustering.

In 
lustering, this issue has already been ta
kled by di�erent approa
hes:

some rely on 
lustering ensembles, 
ombining together the 
lusterings ob-

tained from ea
h view or from ea
h dissimilarity into a 
onsensus 
lustering

[39℄. A more 
omplex strategy, des
ribed in [40℄, iteratively updates the dif-

ferent 
lusterings using a global log-likelihood approa
h until they 
onverge

to a 
onsensus. Other authors propose to 
on
atenate all data/views prior

to the 
lustering. If kernels are available, this method is known as multi-

10



ple kernel 
lustering: the di�erent kernels are 
ombined by using a 
onvex


ombination and the 
oe�
ients of the 
onvex 
ombination are optimized to-

gether with the 
lustering [41, 42℄. In a similar way, if the data are des
ribed

by numeri
al variables belonging to di�erent feature groups, [43℄ proposes

to weight ea
h group and to optimize simultaneously the 
lustering and the

weights of the groups.

For the SOM algorithm as well, a few arti
les ta
kle related issues: in

parti
ular, [44℄ 
ombines numeri
 and binary variables to produ
e a single

map by optimizing two quantization energies in parallel and [1, 2℄ use a

multiple kernel framework to integrate various information.

In the present se
tion, we use a similar approa
h by 
ombining di�erent

dissimilarities in a 
onvex 
ombination. We propose an algorithm whi
h

learns an optimal 
ombination on-line, by minimizing the energy fun
tion.

3.1. Computing a multiple dissimilarity

Suppose now that the observations x1, . . . , xn are not des
ribed by a

single dissimilarity matrix ∆, but by D dissimilarity matri
es ∆
1
, . . . , ∆

D
,

where ∆d =
(
δd(xi, xj)

)
ij
. The dissimilarities 
an be either di�erent dissimi-

larities 
omputed on the same data or dissimilarities 
omputed from di�erent

variables measured on the same individuals (e.g., a dissimilarity that mea-

sures proximities between nodes in a graph and a dissimilarity that measures

proximities between the node labels, see Se
tion 4.3 for an example).

Similarly to the multiple kernel approa
h des
ribed in [45℄ or in [1℄ (for

multiple kernel SOM), we propose to 
ombine all the dissimilarities into a

single one, de�ned as a 
onvex 
ombination:

δαij =

D∑

d=1

αdδ
d
ij (4)

where αd ≥ 0 and
∑D

d=1 αd = 1. In the Eu
lidean framework, this approa
h is

stri
tly equivalent to the multiple kernel SOM approa
h be
ause ‖xi−xj‖
2
d =

〈xi − xj , xi − xj〉d (multiple kernel is a 
onvex 
ombination of dot produ
ts

whereas Equation (4) is based on a 
onvex 
ombination of squared distan
es).

11



3.2. On-line multiple relational SOM

If the (αd) are given, relational SOM based on the dissimilarity introdu
ed

in Equation (4) aims at minimizing (over (βu)u) the following energy fun
tion

E((βu)u, (αd)d) =

U∑

u=1

n∑

i=1

H (d (f(xi), u)) δ
α (xi, pu(βu)) ,

where δα (xi, pu(βu)) is de�ned as in Equation (2) by

δα (xi, pu(βu)) ≡∆
α
i βu −

1

2
βT
u∆

αβu (5)

with ∆
α =

∑
d αd∆

d

When there is no a-priori on the (αd)d, we propose to in
lude the opti-

mization of the 
onvex 
ombination within the on-line algorithm whi
h trains

the map. This idea is similar to the one proposed in [46℄ for optimizing a ker-

nel parameter in ve
tor quantization algorithms. More pre
isely, a sto
hasti


gradient des
ent step is added to the original on-line relational SOM algo-

rithm to optimize the energy E((βui)ui, (αd)d), over both (βui)ji and (αd)d.
To perform the sto
hasti
 gradient des
ent step on the (αd), the 
omputation

of the derivative of

E|xi
=

U∑

u=1

H (d (f(xi), u)) δ
α (xi, pu(βu))

(the 
ontribution of the randomly 
hosen observation (xi)i to the energy)

with respe
t to α is needed. Sin
e

∂

∂αd

[δα(xi, pu)] = δd(xi, pu),

we have

Did =
∂E|xi

∂αd

=

U∑

u=1

H (d (f(xi), u))

(
∆

d
i βu −

1

2
βT
u∆

dβu

)
.

Following an idea similar to that of [45℄, the SOM is trained by perform-

ing, alternatively, the standard steps of the SOM algorithm (i.e., assignment

and representation steps) and a gradient des
ent step for the (αi)i. The

methodology is des
ribed in Algorithm 2.

12



Algorithm 2 On-line multiple dissimilarity SOM

1: For all u = 1, . . . , U and i = 1, . . . , n, initialize β0
ui su
h that β0

ui ≥ 0 and∑n

i=1 β
0
ui = 1.

2: For all d = 1, . . . , D, initialize α0
d ∈ [0, 1] st

∑
d α

0
d = 1. return δα,0 ←∑

d α
0
dδ

d
.

3: for t=1,. . . ,T do

4: Randomly 
hoose an input xi

5: Assignment step: �nd the unit of the 
losest prototype

f t(xi)← arg min
u=1,...,U

δα,t−1 (xi, pu(βu))

where δα,t−1 (xi, pu(βu)) is de�ned as in Equation (5).

6: Representation step: update all prototypes a

ording to the new as-

signment: ∀ u = 1, . . . , U ,

βt
u ← βt−1

u + µ(t)H (d (f(xi), u))
(
1i − βt−1

u

)

7: Gradient des
ent step: update the 
onvex 
ombination parameters:

∀ d = 1, . . . , D,

αt
d ← αt−1

d + ν(t)Dt
d

where Dt
d is the des
ent dire
tion and update δα,t

δα,t ←
∑

d

αt
dδ

d.

8: end for

To ensure that the gradient step respe
ts the 
onstraints on α (αd ≥ 0
and

∑
d αd = 1), the following strategy is used: similarly to [47, 48, 45℄, the

gradient

(
∂Et−1|xi

∂αd

)

d
is redu
ed and proje
ted su
h that the non-negativity of

α is ensured. The following modi�ed des
ent step is thus used:

D̃d =





0 if αd = 0 and Dd −Dd0 > 0
−Dd +Dd0 if αd > 0 and d 6= d0∑

d6=d0, αd>0 (Dd −Dd0) otherwise

The des
ent step ν(t) is de
reased with the standard rate of ν0/t with an

initial ν0 small enough to ensure the positivity 
onstraint on (αd)d.

13



4. Appli
ations

In this se
tion, several appli
ations, on simulated or real-life data sets,

illustrate the performan
es of the proposed methods. Se
tion 4.1 
ompares

on-line and bat
h relational SOM on a DNA bar
oding data set, Se
tion 4.2


ompares the use of dissimilarities and kernels for mapping two politi
al

graphs into a grid, Se
tion 4.3 illustrates the e�
ien
y of the use of a multiple

dissimilarity approa
h on a simulated data set and, �nally, Se
tion 4.4 applies

the multiple relational SOM to a large data set of 
ategori
al time series and

shows that the multiple relational SOM approa
h 
an be used to interpret

whi
h dissimilarities produ
e the most relevant 
lusters.

4.1. Comparison between on-line and bat
h relational SOM on a geneti
 data

set

This �rst experiment aims at providing a 
omparison between on-line

and bat
h relational SOM. It is performed on a data set that 
ontains 465

input data issued from ten unbalan
ed sampled spe
ies of Amazonian butter-

�ies. This data set was previously used by [49℄ to demonstrate the synergy

between DNA bar
oding and morphologi
al-diversity studies. The notion

of DNA bar
oding 
omprises a wide family of mole
ular and bioinformati
s

methods aimed at identifying biologi
al spe
imens and assigning them to a

spe
ies. A

ording to the vast literature published during the past years on

the topi
, two separate tasks emerge for DNA bar
oding: on the one hand,

assign unknown observations to known spe
ies and, on the other hand, dis-


over undes
ribed spe
ies, [50℄. The se
ond task is usually approa
hed with

the Neighbor Joining algorithm [51℄ whi
h 
onstru
ts a tree similar to a

dendrogram. When the sample size is large, the trees be
ome rapidly un-

readable. Moreover, they are quite sensitive to the order in whi
h the input

data are presented. Unsupervised learning and visualization methods are

used to a very limited extent by the DNA bar
oding 
ommunity, although

the information they bring may be quite useful. Self-organizing maps provide

a visualization of the data while bringing out 
lusters or groups of 
lusters

that may 
orrespond to yet unknown spe
ies.

DNA bar
oding data are 
omposed of sequen
es of nu
leotides, i.e. se-

quen
es of �a�, �
�, �g�, �t� letters in high dimension (hundreds or thousands of

sites). Hen
e, sin
e the data are not Eu
lidean, dissimilarity-based methods

appear to be more appropriate. Spe
i�
 distan
es and dissimilarities su
h as

the Kimura-2P [52℄ are usually 
omputed. Re
ently, bat
h median SOM was

14



tested in [53℄ on several data sets, amongst whi
h the Amazonian butter�ies.

Although median SOM provided en
ouraging results, two main drawba
ks

emerged. First, sin
e the algorithm was run in bat
h, the organization of the

map was generally poor and highly depending on the initialization. Se
ond,

sin
e the algorithm 
al
ulates a prototype for ea
h 
luster among the data

set, it does not allow for empty 
lusters. Thus, the existen
e of spe
ies or

groups of spe
ies was di�
ult to a
knowledge. The use of on-line relational

SOM over
omes these two issues. Figure 2 
ontains the maps obtained with

median SOM and relational SOM with PCA initialization, both trained in

bat
h versions

4

and Figure 3 illustrates the mapping produ
ed with the on-

line relational SOM. The three algorithms were run with identi
al �xed seeds

for the random generators. The 
lustering quality of median SOM is poor,

sin
e several 
lusters mix together several spe
ies. On the 
ontrary, relational

SOM allows for empty 
lusters and thus produ
es a better mapping, from

a 
lustering point of view: the only mixing 
lass 
orresponds to a labeling

error. Moreover, the empty 
ells help separating the main groups of spe
ies.

Clustering may thus be useful in addressing misidenti�
ation issues.

Topographi
 errors were 
omputed for the three mappings in order to

assess the quality of the proje
tion. For the online algorithm, the error is

0.0022, for relational SOM with PCA initialization we obtained 0.3682, while

the error of median SOM is 0.3094. Hen
e, the sto
hasti
ity of the on-line

algorithm allowed for a better organization of the map, 
ompared with bat
h

algorithms.

In Figure 3b, distan
es with respe
t to the nearest neighbors were 
om-

puted for ea
h node. The distan
e between two nodes/
ells is 
omputed as

the mean dissimilarity between the observations within ea
h 
lass. A polygon

is drawn within ea
h 
ell with verti
es proportional to the distan
es to its

neighbors. If two neighbor prototypes are very 
lose, then the 
orresponding

verti
es are very 
lose to the edges of the two 
ells. If the distan
e between

neighbor prototypes is very large, then the 
orresponding verti
es are far

apart, 
lose to the 
enter of the 
ells.

4

relational bat
h SOM with random initialization was also tested but, sin
e the results

were worse than the ones obtained with PCA initialization, they are not shown in this

arti
le.

15



(a) (b)

Figure 2: Spe
ies diversity distribution by 
luster (radius proportional to the size of the


luster): Median bat
h SOM (a) and Relational bat
h SOM with PCA initialization (b).

(a) (b)

Figure 3: On-line relational SOM results for Amazonian butter�ies: (a) Spe
ies diversity

distribution by 
luster (radius is proportional to the 
luster size. (b) Distan
es between

prototypes.

4.2. On-line relational SOM and on-line kernel SOM to de
ipher the stru
-

ture of politi
al networks

This present se
tion's purpose is to give a 
omparison of the performan
es

obtained with relational SOM when used with various metri
s. More pre-


isely, we will show that for stru
tural data su
h as graphs, a kernel is not

always the most relevant way to extra
t information from the graph stru
ture,


ompared to, i.e., the simple similarity based on the length of the shortest

path between two nodes.

The data used in this se
tion 
ome from two famous data sets pertaining

to the US politi
s. The �rst data set is a graph where the nodes are 105

Ameri
an politi
al books, all published around the presidential ele
tion of
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2004 and sold by Amazon.
om. The edges of this graph en
ode the fa
t that

two books were 
o-pur
hased by a 
ommon buyer

5

. All nodes are labeled

a

ording to their politi
al a�liation (
onservative, liberal or neutral), and

this information will be used to validate the results a posteriori.

The se
ond data set is a graph representing the US politi
s blogosphere,

re
orded in 2004, for the same presidential ele
tion as the previous one, by

Adami
 and Glan
e [54℄. This data set 
ontains 1 222 nodes whi
h are po-

liti
al blogs and 16 714 edges that represent a hyperlink between two blogs

6

.

Again, additional information pertaining the politi
al preferen
e of the blog is

also provided (here only 
onservative or liberal). Both graphs are represented

in Figure 4 by a Fru
hterman and Reingold [55℄ for
e dire
ted pla
ement al-

gorithm and nodes are 
olored a

ording to the politi
al a�liation of the

book or of the blog.

Figure 4: Politi
al books (left) and blogs (right) networks. Nodes are labeled a

ording

to the politi
al orientation of the book or of the blog: pink is for 
onservative, blue for

liberal and green for neutral.

Relational SOM was performed to proje
t the nodes of the two graphs

on a square grid having dimension 5× 5 (books) and 10× 10 (blogs). Three

di�erent dissimilarities were used to perform this task:

5

This graph was built by Valdis Krebs and is available for downloading at

http://www-personal.umi
h.edu/~mejn/netdata/polbooks.zip.

6

The original graph was dire
ted but we only used undire
ted edges to perform our

analysis.

17

http://www-personal.umich.edu/~mejn/netdata/polbooks.zip


• the length of the shortest path between two nodes. Note that, in gen-

eral, the length of the shortest path is not a Eu
lidean distan
e: for

the two graphs des
ribed in this se
tion, the 
ondition of [16℄ is not

satis�ed;

• a dissimilarity de�ned as the square of the distan
e indu
ed by the

heat kernel (K = e−γL
where L is the Lapla
ian, [56℄), with parameters

γ = 0.1 and 1. In this 
ase, relational SOM is equivalent to kernel SOM

as des
ribed in [18, 20℄;

• a dissimilarity de�ned as the square of the distan
e indu
ed by the


ommute time kernel [57℄.

The performan
es of the tested methods were assessed using three 
riteria:

the modularity of the obtained partition, the neurons' purity (
ompared to

the politi
al labels) and the topographi
 error of the map. The modularity

[58℄ is a measure of quality of a partition of the nodes in a graph:

Q =
U∑

u=1

∑

i,j: f(xi)=f(xj)=u

(
Eij −

didj
2m

)

where Eij = 1 i� there is an edge between nodes xi and xj , di is the degree
of node xi and m is the number of edges in the graph. The best partition


orresponds to the largest modularity. The neurons' purity is a measure

of the 
onsisten
y of the 
lustering with respe
t to the politi
al labels: it


ounts the frequen
y of the politi
al labels of the nodes that are equal to

the majority politi
al label of the node's 
luster. The 
loser to 1 the purity

is, the better the 
lustering is. The last quality 
riterium, the topographi


error of the map [35℄, quanti�es the 
ontinuity of the map, with respe
t to

the input-spa
e metri
 as already explained in Se
tion 2.3. Noti
e that, as it


omputes the se
ond best mat
hing unit, the topographi
 error depends on

the metri
 of the input spa
e itself and tells us if this metri
 is well preserved

on the map.

The results are given in Table 1. In addition, Figures 5 (books) and 6

(blogs) display two of the maps obtained for ea
h data set. First note that

the modularity obtained with the SOM algorithm should not be 
ompared

with that of a standard node 
lustering algorithm: the number of 
lusters

used in su
h maps is often mu
h larger than the optimal number of 
lusters for

the modularity (for instan
e, the optimal modularity found by the algorithm
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Dissimilarity Shortest path Heat kernel Heat kernel Commute time

length γ = 0.1 γ = 1 kernel

Politi
al books

modularity 0.25 -0.05 0.08 0.27

purity 0.88 0.61 0.72 0.89

topo. error 0.048 0.133 0.038 0.038

Politi
al blogs

modularity 0.08 0.02 0.00 0.00

purity 0.93 0.89 0.79 0.57

topo error 0.303 0.047 0.322 0.899

Table 1: Modularity, neurons' purity and topographi
 error obtained for the data sets

�politi
al books� and �politi
al blogs� by relational and kernel SOM algorithms.

des
ribed in [59℄ gives only 10 
lusters, that should be 
ompared to the 100


lusters of the map). Nevertheless, this measure of the 
lustering quality is

still valid for 
omparing di�erent dissimilarities.

For the politi
al books data set, the best map is obtained by using the

on-line kernel SOM algorithm with the 
ommute time kernel. The on-line

relational SOM with the shortest path dissimilarity obtains 
omparable per-

forman
e but the heat kernel gives poor results, whatever the value of γ.
For the politi
al blogs, the on-line relational SOM gives good results and

manages to dis
riminate the two groups of blogs quite well, while its topo-

graphi
 error is rather large. On the other hand, the kernel SOM with the

heat kernel (γ = 0.1) has a mu
h better topographi
 error, while it badly

dis
riminates the labels and produ
es a bad 
lustering of the nodes of the

graph on the map (as measured by the modularity): this 
an be explained

by the fa
t that, even though the map properly represents the topographi


organization of the input spa
e, the metri
 used to represent the data may

not be the most a

urate to emphasize some parti
ular features of the data

that 
an be of a major interest for the user.

In a se
ond step, a hierar
hi
al 
lustering of the prototypes was per-

formed. Using the symboli
 representation of the prototypes as pu ∼∑n

i=1 βuixi, the dissimilarity between two prototypes 
an be expressed as:

δ(pu, pu′) := −
1

2
(βu − βu′)T ∆(βu − βu′) (6)

and used as an input in the hierar
hi
al 
lustering algorithm (see [20℄, The-
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Figure 5: Politi
al books. Maps obtained by the on-line relational SOM algorithm with

the shortest path dissimilarity (left) and by the on-line kernel SOM with the 
ommute

time kernel (right).

orem 1, for a justi�
ation of this formula). Only three and two 
lusters were

kept for, respe
tively, the politi
al blogs and the politi
al books data sets

in order to try to retrieve the original labels. The resulting 
lusters are dis-

played in Figures 7 and 8. Moreover, the 
lasses' purity and modularity are

given in Table 2.

Dissimilarity Shortest path Heat kernel Heat kernel Commute time

length γ = 0.1 γ = 1 kernel

Politi
al books

modularity 0.50 -0.02 -0.00 0.41


lasses' purity 0.84 0.49 0.47 0.76

Politi
al blogs

modularity 0.39 0.04 -0.00 0.00


lasses' purity 0.91 0.52 0.58 0.52

Table 2: Modularity and purity of the 
lasses obtained by a hierar
hi
al 
lustering of the

prototypes, for the data sets �politi
al books� and �politi
al blogs�.

As expe
ted, hierar
hi
al 
lustering tends to slightly de
rease the 
lasses'

purity (
ompared to the neurons' purity) and to strongly in
rease the mod-

ularity. But it also a�e
ts whi
h of the dissimilarities seems to represent the

data better: for both data sets, the shortest path dissimilarity over
omes

the dissimilarities based on kernels. This shows that the use of a kernel is
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Figure 6: Politi
al blogs. Maps obtained by the on-line relational SOM algorithm with

the shortest path dissimilarity (left) and by the on-line kernel SOM with the heat kernel

γ = 0.1 (right).

not always the best possible 
hoi
e for 
omputing similarities/dissimilarities

between observations and that allowing the use of a larger family of dissimi-

larities 
an be useful in some 
ases.

4.3. Multiple relational SOM on simulated data

In this se
tion, a simple example is used to test the algorithm and il-

lustrate its behavior in the presen
e of 
omplementary information. 200

observations, divided into 8 groups (indexed from 1 to 8 in the following),

were generated using three di�erent types of data:

• an unweighted graph, simulated similarly as the �planted 3-partition
graph� des
ribed in [60℄. The nodes of the groups 1 to 4 and the nodes

of the groups 5 to 8 
ould not be distinguished in the graph stru
ture:

the edges within these two sets of nodes were randomly generated with

a probability equal to 0.3. The edges between these two sets of nodes

were randomly generated with a probability equal to 0.01;

• numeri
al data that were two dimensional Gaussian ve
tors. The vari-

ables 
orresponding to observations of odd groups were simulated by

Gaussian ve
tors with mean (0, 0) and independent 
omponents having

a varian
e equal to 0.3 and the variables 
orresponding to observations

of even groups were simulated by Gaussian ve
tors with mean (1, 1)
and independent 
omponents having a varian
e equal to 0.3;
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Figure 7: Politi
al books. Maps obtained by the on-line relational SOM algorithm with

the shortest path dissimilarity (left) and by the on-line kernel SOM with the 
ommute

time kernel (right).

• a fa
tor with 2 levels. Observations of groups 1, 2, 5, and 7 were

a�e
ted to the �rst level and observations of the other groups to the

se
ond level.

Hen
e, only the 
ombined knowledge of the three data sets gave a

ess

to the eight original groups. The multiple relational SOM algorithm was

applied to this problem with the shortest path distan
e for the graph, the

standard Eu
lidean distan
e for the numeri
al data and Di
e's distan
e for

the fa
tor variable (equal to 0 if the fa
tors are identi
al between the two

observations and to 1 if not). The algorithm was 
ompared with

• a multiple kernel SOM approa
h as des
ribed in [2℄ where the kernels

used were the 
ommute time kernel [57℄ for the graph and the Gaussian

kernel for both the other data sets (the fa
tor was re
oded as a numeri


variable using its disjun
tive form). The parameter of the Gaussian

kernel was set as re
ommended in [61℄;

• a standard relational SOM approa
h using one of the three data sets

only. It was also 
ompared to the dissimilarity SOM using numeri
al

and fa
tor data or all the three data sets but used as if they were issued

from the same data set with a Eu
lidean distan
e (when the graph was

added to the numeri
al and fa
tor data, it was under the form of its

adja
en
y matrix).
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Figure 8: Politi
al blogs. Maps obtained by the on-line relational SOM algorithm with

the shortest path dissimilarity (left) and by the on-line kernel SOM with the heat kernel

γ = 0.1 (right).

The 
omparison was performed on 100 di�erent data sets generated as pre-

viously des
ribed.

The performan
es of the di�erent approa
hes were 
ompared using the

normalized mutual information [62℄ with respe
t to the original 
lasses, the

average node purity, taking again as a referen
e the original 
lasses, and the

topographi
 error [35℄. The �rst two quality measures quantify the adequa-

tion between the original 
lasses and the 
lustering provided by the SOM.

The node purity has values between 0 and 1 and is equal to 1 when the two

partitions are identi
al. The last quality measure, the topographi
 error, does

not depend on the original 
lass but it quanti�es the 
ontinuity of the map,

with respe
t to the input spa
e metri
. The results are given in Figure 9,

whi
h displays the distributions of the normalized mutual information, the

nodes' purity and the topographi
 error, over the 100 data sets. Figure 10

provides examples of resulting maps.
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Figure 9: Normalized Mutual Information (top left), neurons' purity (top right) and to-

pographi
 error (bottom) of multiple relational SOM, multiple kernel SOM and relational

SOM used with all or two data sets (num&fa
) simply merged in a single data set or with

a single data set (graph, numeri
 or fa
tor).

Taking into a

ount the 
lustering quality (normalized mutual informa-

tion), the node purity and the topographi
 quality, the multiple relational

SOM outperforms the other methods. The di�eren
e between the use of the

shortest-path dissimilarity and a kernel for graph in a similar multiple setting

is small but still signi�
ant (with p-values smaller than 10−9
for Wil
oxon

paired tests).
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Note that the normalized mutual information gives here a pessimisti
 vi-

sion of the results be
ause it penalizes the fa
t that the original 
lusters are

separated into several neurons on the grid. This explains the good perfor-

man
e (despite their large variability), in term of normalized mutual informa-

tion, of the grid built from the numeri
 variables and the fa
tor only be
ause

this latter map 
ontains mu
h more empty 
lusters as shown in Figure 10.

On the 
ontrary, the example of the map resulting from on-line multiple rela-

tional SOM in Figure 10 shows a good 
lassi�
ation and a good organization

a

ording to the three types of information: the eight groups are almost

perfe
tly distinguished by the algorithm.

Also note that the topographi
 error is not an optimal way to 
ompare

the results obtained with data sets that do not 
ontain the same amount of

information: indeed, the very good topographi
 error obtained by the map

trained from the numeri
 data only or the fa
tor only simply means that

the topographi
 properties of these data is well preserved on the map but

this 
annot be 
ompared to the multiple relation SOM, the multiple kernel

SOM or the map trained with all data and a standard SOM: these maps are

supposed to preserve the topographi
 properties of all three sorts of data,

whi
h is a harder task than preserving the topographi
 property of only one

sort (numeri
, fa
tor, graph) of data. In this 
ase, merging all data in a single

data set whi
h is then passed as an input to a numeri
 SOM leads to a very

bad topographi
 error (approximately 30 times larger than the one obtained

with multiple relational SOM or multiple kernel SOM).

The evolution of the α, shown in Figure 10 is also interesting: the Di
e's

distan
e, whi
h is the only similarity measure based on a non noisy set of data

obtains larger weights than the other two dissimilarities. This is 
onsistent

with the fa
t that these data are indeed the best of the three data sets to

distinguish between the original 
lusters: as shown in Figure 9, the map

based on the fa
tor is better in terms of normalized mutual information than

the ones based on the numeri
 variables or on the graph only (its node purity

is very low be
ause it perfe
tly distinguished the data into two 
lusters where

four original 
lusters are equally mixed).
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Graph Numeri
al variables

α evolution multiple rSOM

rSOM (simple) rSOM

with numeri
 variables and fa
tor with all three data sets

Figure 10: Summary of the experiment: the original graph and the original distri-

bution of the numeri
al variables is given at the top of the �gure; multiple rSOM results

(se
ond row) with the evolution of the α and the resulting map (disks have an area pro-

portional to the number of observations and are 
olored a

ording to the distribution of

the original 
lasses in the 
orresponding neuron); bottom: maps obtained using numeri


variables and fa
tor merged in a single data set and a simple Eu
lidean distan
e (left) and

using all three data sets but a simple Eu
lidean distan
e.
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4.4. Multiple relational SOM on real data

The last example illustrates multiple relational SOM on data related to

s
hool-to-work transitions. We used the data in the survey �Generation 98�

7

.

A

ording to the Fren
h National Institute of Statisti
s (INSEE), 22.7% of

young people under 25 were unemployed at the end of the �rst semester

2012.

8

Hen
e, it is 
ru
ial to understand how the transition from s
hool to

employment or unemployment is a
hieved, in the 
urrent e
onomi
 
ontext.

The data set 
ontains information on 16 040 young people having graduated

in 1998 and monitored during 94 months after having left s
hool. The labor-

market statuses have nine 
ategories, labeled as follows: permanent-labor


ontra
t, �xed-term 
ontra
t, apprenti
eship 
ontra
t, publi
 temporary-

labor 
ontra
t, on-
all 
ontra
t, unemployed, ina
tive, military servi
e, ed-

u
ation. The following stylized fa
ts are highlighted by a �rst des
riptive

analysis of the data as shown in Figure 11:

• permanent-labor 
ontra
ts represent more than 20% of all statuses after

one year and their ratio 
ontinues to in
rease until 50% after three years

and almost 75% after seven years;

• the ratio of �xed-terms 
ontra
ts is more than 20% after one year on

the labor market, but it is de
reasing to 15% after three years and then

seems to 
onverge to 8%;

• almost 30% of the young graduates are unemployed after one year. This

ratio is de
reasing and be
omes 
onstant, 10%, after the fourth year.

The dissimilarities between sequen
es were 
omputed using optimal mat
h-

ing (OM). Also known as �edit distan
e� or �Levenshtein distan
e�, optimal

mat
hing was �rst introdu
ed in biology by [31℄ and used for aligning and


omparing sequen
es. In so
ial s
ien
es, the �rst appli
ations are due to [32℄.

The underlying idea of optimal mat
hing is to transform one sequen
e into

another using three possible operations: insertion, deletion and substitution.

A 
ost is asso
iated to ea
h of the three operations. The dissimilarity between

7

available thanks to Génération 1998 á 7 ans - 2005, [produ
er℄ CEREQ, [di�usion℄

Centre Mauri
e Halbwa
hs (CMH)

8

All 
omputations were performed with the free statisti
al software environment R

(http://
ran.r-proje
t.org/, [25℄). The graphi
al illustrations were 
arried out using

the TraMineR pa
kage [63℄.
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Figure 11: Labor market stru
ture

sequen
es is then 
omputed as the 
ost asso
iated to the smallest number

of operations whi
h allows to transform the sequen
es into ea
h other. The

method seems simple and relatively intuitive, but the 
hoi
e of the 
osts is a

deli
ate operation in so
ial s
ien
es. This topi
 is subje
t to lively debates in

the literature [4, 5℄ mostly be
ause of the di�
ulties to establish an expli
it

and sound theoreti
al frame.

In our appli
ation, all 
areer paths have the same length, the status of the

graduate students being observed during 94 months. Hen
e, we suppose that

there are no insertions or deletions and that only the substitution 
osts have

to be de�ned for OM metri
s. Among optimal-mat
hing dissimilarities, we

sele
ted three dissimilarities: the OM with substitution 
osts 
omputed from

the transition matrix between statuses as proposed in [64℄, the Hamming

dissimilarity (HAM, no insertion or deletion 
osts and a substitution 
ost

equal to 1) and the Dynami
 Hamming dissimilarity (DHD as des
ribed in

[65℄).

In order to identify the role of the di�erent dissimilarities in extra
ting

typologies, we 
onsidered several samples drawn at random from the data.

For ea
h of the experiments below, 50 samples 
ontaining 1 000 input se-

quen
es ea
h were 
onsidered. In order to assess the quality of the maps, two

indexes were 
omputed: the quantization error for quantifying the quality of

the 
lustering and the topographi
 error for quantifying the quality of the

mapping, [66℄. These quality 
riteria all depend on the dissimilarities used

to train the map but the results are made 
omparable by using normalized

dissimilarities.
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Metri
 OM HAM DHD

α-Mean 0.43111 0.28459 0.28429

α-Std 0.02912 0.01464 0.01523

Metri
 OM HAM DHD Optimally-tuned α
Quantization error 92.93672 121.67305 121.05520 114.84431

Topographi
 error 0.07390 0.08806 0.08124 0.05268

Table 3: Preliminary results for three OM metri
s (average over 50 random subsamples):

Optimally-tuned α (top table) and Quality 
riteria for the SOM 
lustering (bottom table).

The results are listed in Table 3. A

ording to the mean values of the

α's, the three dissimilarities 
ontributed to extra
ting typologies. The Ham-

ming and the dynami
al Hamming dissimilarities have similar weights, while

the OM with 
ost-matrix de�ned from the transition matrix has the largest

weight. The mean quantization error 
omputed on the maps trained with

the three dissimilarities optimally 
ombined is larger than the quantization

error 
omputed on the map trained with the OM metri
 only. On the other

hand, the topographi
 error is improved in the mixed 
ase. In this 
ase, the

joint use of the three dissimilarities provides a trade-o� between the quality

of the 
lustering and the quality of the mapping. The results 
on�rm the

di�
ulty to de�ne adequate 
osts in optimal mat
hing and the fa
t that the

metri
 has to be 
hosen a

ording to the aim of the study: building typologies

(
lustering) or visualizing data (mapping).

Finally, multiple rSOM was trained on the entire data set. The �nal

map is illustrated in Figure 12. Several typologies emerge from the map: a

fast a

ess to permanent 
ontra
ts (
lear blue), a transition through �xed-

term 
ontra
ts before obtaining stable ones (dark and then 
lear blue), a

holding on pre
arious jobs (dark blue), a publi
 temporary 
ontra
t (dark

green) or an on-
all (pink) 
ontra
t ending at the end by a stable one, a long

period of ina
tivity (yellow) or unemployment (red) with a gradual return

to employment. The mapping also shows a progressive transition between

traje
tories of ex
lusion on the west and qui
k integration on the east. A

more detailed study of this data set is available in [67℄.
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Figure 12: Final map obtained with the OM dissimilarities

5. Con
lusion

An on-line version of relational SOM is introdu
ed in this paper. It


ombines the standard advantage of the sto
hasti
 version of SOM (better

organization) with relational SOM, whi
h is able to handle data des
ribed

by dissimilarities. This approa
h is extended to the 
ase where several dis-

similarities are available for the initial data set. Online multiple relational

SOM handles several dissimilarities by 
ombining them in an optimal fashion.

The algorithm shows good performan
es, 
ompared to alternative methods,

in proje
ting data des
ribed by numeri
al variables, by 
ategori
al variables

or by relations and is helpful to understand whi
h dissimilarity is the most

relevant when several ones are available. However, in its multiple dissimilar-

ity version, the main drawba
k of the proposed relational SOM algorithm is

related to the 
omputation time: a sparse version should be investigated to

allow us to handle very large data sets.
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Appendix A. Pseudo-eu
lidean framework and justi�
ation of

Equation 2

The proof below 
an be derived dire
tly from Theorem 1 of [20℄. It is

given in details here, for the sake of 
larity.

As explained in [22, 3℄, if δ is a symmetri
 dissimilarity matrix, then, there

exists two Eu
lidean spa
es E and F , with positive de�nite s
alar produ
ts,

and a mapping φ : x ∈ G → (φ|E(x), φ|F(x)) ∈ E ⊗ F su
h that

δ(xi, xj) = ‖φ|E(xi)− φ|E(xj)‖
2
E − ‖φ|F(xi)− φ|F(xj)‖

2
F . (A.1)

Hen
e, supposing that pu 
an be written as pu =
∑

i βui(φ|E(xi), φ|F(xi))
(whi
h, in the text of the arti
le is written

∑
i βuixi for the sake of simpli
ity),
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then the right hand side of Equation (2) 
an be re-written as:

∆iβu −
1

2
βT
u∆βu =

∑

l

βulδ(xl, xi)−
1

2

∑

ll′

βulβul′δ(xl, xl′) (A.2)

=

[
∑

l

βul‖φ|E(xi)− φ|E(xl)‖
2
E

−
1

2

∑

ll′

βulβul′‖φ|E(xl)− φ|E(xl′)‖
2
E

]
−

[
∑

l

βul‖φ|F(xi)− φ|F(xl)‖
2
E

−
1

2

∑

ll′

βulβul′‖φ|F(xl)− φ|F(xl′)‖
2
F .

]

But, using that

∑
l βul = 1, we obtain

[
∑

l

βul‖φ|E(xi)− φ|E(xl)‖
2
E −

1

2

∑

ll′

βulβul′‖φ|E(xl)− φ|E(xl′)‖
2
E

]
=

‖φ|E(xi)‖
2
E − 2

∑

l

βul〈φ|E(xi), φ|E(xl)〉E +
∑

l

βul‖φ|E(xl)‖
2
E +

−
1

2

∑

l

βul‖φ|E(xl)‖
2
E −

1

2

∑

l

βul‖φ|E(xl)‖
2
E +

∑

l

∑

l′

βulβul′〈φ|E(xl), φ|E(xl′)〉E =

‖φ|E(xi)−
∑

l

βulφ|E(xl)‖
2
E ,

whi
h, inje
ted into Equation (A.2), gives

∆iβu −
1

2
βT
u∆βu = ‖φ|E(xi)−

∑

l

βulφ|E(xl)‖
2
E −

‖φ|F(xi)−
∑

l

βulφ|F(xl)‖
2
F

whi
h is the distan
e, in E ⊗ F , indu
ed by the pseudo-norm de�ned in

Equation (A.1), between (φE(xi), φF(xi)) and pu.�
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Appendix B. Proof that

∑
l
βt

ul
= 1 at any step t of the algorithm

We prove here that

∑
l β

t
ul = 1, ∀ t ≥ 0. Noting that the property is

veri�ed for t = 0, let us suppose that for a given t, we have

∑
l β

t
ul = 1.

Then,

βt+1
ul =

{
βt
ul + µ(t)H t(d(f t(xi), u))(1− βt

ul) if i = l
βt
ul − µ(t)H t(d(f t(xi), u))β

t
ul otherwise.

and thus, using

∑
l β

t
ul = 1, we have

∑

l

βt+1
ul =

∑

l

βt
ul + µ(t)H t(d(f t(xi), u))− µ(t)H t(d(f t(xi), u))

t∑

ul

βt
ul

= 1 + µ(t)H t(d(f t(xi), u))− µ(t)H t(d(f t(xi), u)) = 1.�

Appendix C. Equivalen
e between relational SOM, kernel SOM

and standard SOM

This appendix shows that

1. if (xi) take values in a Eu
lidean spa
e and if the dissimilarity δ is the

Eu
lidean distan
e in this spa
e, then the on-line version of relational

SOM as presented in Algorithm 1 is exa
tly equivalent to the on-line

version of the standard SOM in this spa
e;

2. if the dissimilarity δ is 
omputed from a kernel K by Equation (3),

then the on-line version of relational SOM is exa
tly equivalent to the

on-line version of the kernel SOM, as des
ribed in [12℄.

Let us �rst prove the �rst part of the assertion: if the prototypes are

initialized in the 
onvex hull of (xi) then, they 
an all be written p0u =∑
i β

0
uixi. As already demonstrated in Appendix A, the assignment step of

the on-line relational SOM minimizes ∆iβu−
1
2
βT
u∆βu whi
h is equal to the

squared distan
e between xi and pu in the Eu
lidean spa
e and proves that

the assignment step is identi
al to the one of the standard SOM.

Then, on-line relational SOM updates the βt
ui by

βt
u = βt−1

u + µ(t)H t(d(f t(xi), u))
(
1i − βt−1

u

)
.

Multiplying ea
h βt
ul by xl gives

xlβ
t
ul =

{
xlβ

t−1
ul (1− µ(t)H t(d(f t(xi), u))) if l 6= i

xiβ
t−1
ui + µ(t)H t(d(f t(xi), u))

(
xi − βt−1

ui

)
if l = i

,
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and, by summing over l, leads to

∑

l

βt
ulxl =

∑

l

βt−1
ul xl + µ(t)H t(d(f t(xi), u))

(
xi −

∑

l

βt−1
ul xl

)

with ptul =
∑

l xlβ
t−1
ul the representation step in the on-line relational SOM

is thus

ptu = pt−1
u + µ(t)H t(d(f t(xi), u))

(
xi − pt−1

u

)
,

whi
h is in the 
onvex hull of (xi) as long as pt−1
u already is, as shown in

Appendix B. This is also the representation step of the standard on-line

SOM.

Then, the equivalen
e between kernel SOM and relational SOM follows

straightforwardly sin
e kernel SOM is equivalent to standard SOM in the

RKHS indu
ed by the kernel and that the square distan
e in this spa
e is

given by Equation (3).�
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