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Abstract

Functional data analysis is a growing research field since more and
more pratical applications involve functional data. In this paper, we focus
on the problem of regression and classification with functional predictors:
the model suggested combines an efficient dimension reduction procedure
(functional SIR, first introduced by Ferré and Yao (2003)), for which we
give a regularized version, and the accuracy of a neural network. The con-
sistency of the model is proved and the method is successfully confronted
to real life data.

Keywords: Classification, Dimension Reduction, Functional Data Analy-
sis, Multi-layer Perceptron, Prediction.

1 Introduction

Functional regression is now a very important part of statistics as functional
variables occur frequently in practical applications. We present two examples
that take place in this area. First, we face a regression problem where the regres-
sor are curves (see Figure 1): the Tecator data problem consists in predicting
the fat content of pieces of meat from a near absorbance spectrum. This data
set has already been studied by Thodberg (1995) and Ferré and Yao (2003).

[Figure 1 about here.]

Secondly, in the phoneme data set, the data are log-periodograms of a 32 ms
duration corresponding to recorded speakers and we expect to determine which
one of the five phonemes, [sh] as in "she", [dc]] as in "dark", [iy] as in "she",
[aa] as in "dark" and [ao] as in "water", corresponds to this recording. It has
already been described by Hastie, Buja and Tibschirani (1995) and by Ferraty
and Vieu (2003). Clearly, here, functional data is also involved but we face
now a classification problem. However, we will see that both - regression and
classification - can be tackled via a common modelling.
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An extensive review of the numerous studies developped for functional data
analysis can be found in Ramsay and Silverman (1996) including regression and
classification but also many factorial methods. A particularity of functional
regression is that it leads to ill-posed problems because of the infinite dimension
of the feature space. Then original solutions have been introduced to overcome
this problem for the functional linear regression, see e.g. Cardot et al. (1996)
or the nonparametric regression, Ferraty and Vieu (2002). At the same time,
Dauxois, Ferré and Yao (2001) and then Ferré and Yao (2003 and 2004) have
proposed a semi-parametric model for Hilbertian variables which corresponds
to the functional version of Li’s Sliced Inverse Regression, Li (1991).

On a classification point of view, many solutions have been proposed to over-
come ill-posed functional problems including the popular penalization methods.
Friedman (1989) presents the RDA model based on regularization and shrinkage.
Hastie, Tibshirani and Buja (1994 and 1995) propose a discriminant analysis pe-
nalized by smoothing functionals. The idea of penalization was first developped
by Ivanov (1962) and Tihonov (1963 a and b) and it has been used by Pezzulli
and Silverman (1993) and Silverman (1996) for smoothed Principal Components
Analysis and by Leurgans, Moyeed and Silverman (1993) for Canonical Corre-
lation Analysis. Finally, a review of many regularization methods can be found
in Tenorio (2001).

In this paper, we propose a new way to achieve functional regression: the
idea is to join the efficiency of a dimension reduction method using smoothing
penalization, to the strong adaptability of a neural network which can provide
highly non linear solutions even if the number of predictors is too large for
classical nonparametric methods such as kernels. The functional SIR dimension
reduction method is first presented in Section 2. For this penalized version,
consistency results are given in Section 3. Section 4 discusses Neural Network
and gives consistency results for the proposed model combining FSIR and Neural
Networks (which will be called SIR-NNr). Section 5 is devoted to applications:
Section 5.1 deals with the Tecator data set and Section 5.2 with the phoneme
data set. In Appendix A, we give a sketch of the proofs. All programs have
been made using Matlab and are available on request.

2 Sliced Inverse Regression

Let Y be a real random variable and X be a multivariate variable assumed to
have a fourth moment. To overcome the curse of dimensionality in the nonpara-
metric regression of Y on X, Li (1991) introduced the Sliced Inverse Regression.
He considers the following model

Y = f(a'lX,a’QX,...,a;X,e),

where € is centered and independent of X, f is an unknown function and
(aj)j=1,.. 4 are lineary independent vectors.

The space spanned by (a;);=1,.. 4 is called EDR (Effective Dimension Re-
duction) space. SIR deals with the estimation of this EDR space and the aim



of sliced inverse regression is to estimate it by means of the eigenvectors of the
matrix Var(X) Var(E(X]Y)).

In the multivariate context, numerous works deal with SIR. Li (1991), Schott (1994),
Ferré (1998) and Vellila (1998) have worked to determine the dimensionality q.
Then, methods have been proposed to improve SIR: different estimates of the
covariance of the conditional mean have been built (in Hsing and Carroll (1992),
Zhu and Ng (1995) and Zhu and Fang (1996)) while other methods have been
proposed to estimate the EDR space (for example, PHD proposed by Li (1992),
SAVE by Cook (1991) or MAVE by Xia, Tong, Li and Zhu (2002)). The main
interest of this model is that, once the EDR space is estimated, the estimation
of f is obtained very easily with traditional techniques provided that ¢ is not
too large.

2.1 Functional SIR

Now consider a real random variable Y and X a random variable taking its
values in £, the space of squared intregrable functions from a compact interval
7 into R. With the usual inner product defined by, for all f,g in L%, < f, g >=
[ f(t)g(t)dt, L% is a Hilbert space. We will assume that the random variable
X is centered and has a fourth moment. Then, the covariance operator of X
exists and is defined by 'y = E(X ® X) where X ® X denotes the operator
which associates to any f in £Z, < f,X > X. We also get that E(X/Y)
and I'g(xjy) = Var(E(X]Y)) exist. Ferré¢ and Yao (2003) have proposed to
investigate the following model for functional inverse regression:

Y=[f(<X,a1>,...,<X,aq >,¢€) (1)

where f is an unknown function, € a random variable which is centered and
independent of X and (a;);—1, ., are lineary independent functions of £%-.

We focus on the estimation of (a;);=1,. 4. The key of the method comes
from the following theorem:

Theorem 1 Writing A = (< X,a1 >,...,< X,a, >)T, if
(A1) for all w in L% there exists v in RY such that: E(< u, X > JA) = vl A
then E(X/Y') belongs to the subspace spanned by I'xaq,...,T'xaq.

Remark: Note that Cook and Weisberg (1991) show that elliptically distrib-
uted variables satisfy condition (A1) in the multidimensional context but this
can be transposed in infinite dimensional Hilbert spaces.

By using the result of Dauxois, Ferré and Yao (2001), a consequence of The-
orem 1 is that the EDR subspace contains the I' y-orthonormed eigenvectors of
F)}lF E(x/y) associated with the ¢ positive eigenvalues. This is the generaliza-
tion of Li (1991) on SIR to infinite dimensional case.

Unfortunately, F)_(l is not defined since we have to assume that I"x is a posi-
tive definite operator which implies that it is not invertible as defined from £% to
L2 However, if we call (§;);=1, .. oo its sequence of eigenvalues and (u;)i=1.. o



those of orthonormed eigenvectors, Rr the range of I'x and
lel — {h €eH:3f€Rp,h=73"; (%(ul ®ui)(f)}, I'x is a one-to-one mapping
from R L to Ry whose inverse, also called 1";(1, is defined by I‘)}l =3, %ul-@ui.
A basis of the EDR space is thus given by the eigenvector of F;(lI‘E(X/y) but
to ensure that these eigenvectors exist in £%, we have to assume that (see Ferré
and Yao (2004) for details) >°, >~ ﬁ;jE(E(Q/Y)E(Q/Y))2 < 400, where
X =", Gu; is the Karunen Loeve decomposition of X.
Thus, in order to estimate the EDR space, we have to choose an estimate
for T'g(x/y). We have two possibilities:

1. A slicing approach. In Ferré and Yao (2003), the estimate is obtained by
partitionning the domain of Y in {Ij,}n=1,. u:

N
N _
Moy =D i@ —XoX
h=1
where, if T is the indicator function, N = Egil Liyner,y
Ly = N—l’ ZnN:1 X"jyner,; and X = % ZnN:1 X™ is the empirical mean.
2. A kernel based approach. In Ferré and Yao (2004), it is assumed that Y

has a probability density; thus a kernel estimate (of the Nadaraya-Watson
type) is used:

o N
BX/Y =y =Y

and TN /) = & S0 B(X/Y =Y") @ B(X/Y =Y") - X @ X.

A usual estimate of I'y is 'Y = + 25:1 X"®X"—X®X, but this estimate
is ill conditionned (because I'x is not a bounded operator) so the eigenvectors
of (I‘)]}’)_ng(X/Y) do not converge to the eigenvectors of I'y'I'g(x/yy. That is
the reason why penalization or regularization is needed.

Ferré and Yao (2003) suggest to proceed like Bosq (1991) by considering,
instead of I'x, a sequence of finite rank operators with bounded inverses and
converging to I'xy. This leads to the estimates (dé\’)j:l)m’q of (aj)j=1,..q that,
under some conditions, satisfy the following consistency result:

(R

The authors also suggest a way of estimating the EDR space for functional
data without inverting the covariance operator of the regressor (Ferré and Yao,
2004).

We propose, in Section 3, a regularized approach by penalization.



2.2 SIR for classification

Let Cy,...,Cyg be H groups. When Y is multidimensional, the results of Daux-
ois and al. (2001) are still available and by setting ¥ = (I¢,,...,I¢, ), where
I¢, is the indicator function of the hth group, Model (1) remains valid and
we get a natural way to include classification problems into FSIR, see Ferré
and Villa (2005). Note that, in the functional case, multivariate methods for
discrimination have been extended, mainly inspired from Linear Discriminant
Analysis (LDA). In this area, let us mention the works of Hastie et al. (1994,
1995) and James et al. (2000).
Now, by estimating I'g(x,y) by

H

1 — — —

TEx/v) = ¥ > NuE(X/Y =h)@ E(X/Y =h)-X&X
h=1

where Ny, = YN Iiynoyy and E(X/Y =h) = & XN X"Ijy_yy, FSIR
leads to a discriminant analysis. The estimation of the EDR space is identical to
the discriminant space in linear discriminant analysis. However, the estimation
of f leads to a natural classification rule. Indeed, since we have, for all z,
f(x) = EY|X = z) = (P(C1|X = z),..., P(Cg|X = z)), the estimation of f
coincides with the estimations of the probabilities of the groups conditionally
to X.

3 Regularized functional SIR

In Section 2, we saw that the EDR space contains the eigenvalues of the operator
F)_(lf B(x/v)- Thus, as it is the case for the Discriminant Analysis, the estimator
of the first direction of the EDR space can be found by maximizing a Rayleigh
criterion: max, % Unfortunately, as I‘% is ill conditionned, the
maximization of the erﬁpirical Rayleigh expression does not lead to a good
estimate of the EDR space: that is the reason why a regularization is needed.

Provided that we have smooth functions, a relevant method for functionnal
data is to penalize the covariance operator in the Rayleigh expression by in-
troducing smoothing constraints on the estimated functions. This method has
already proved its great efficiency (see Hastie and al. (1995) for an example of
the penalized discriminant analysis).

3.1 Main results

Let S be the subspace of £2 of functions with a squared integrable second
derivative. We introduce a penalty through a bilinear form defined on § x S by,
for all f,gin € S,

[fog) = /T D2 (t)D2g(t)dt



We also define the penalized bilinear form associated with empirical operator
r¥: N N

Qo (f,9) =<T'xf.g > +alf,g]
where « is a regularization parameter. The solutions of the regularized SIR are
given by maximizing, under orthogonal constraints, the function

< Fg(x/y)a,a >

N
a) = .
v () <TI'¥a,a > +afa,d

In order to obtain consistency results for the estimate of (a;)j=1,. 4, We
make the following assumptions

(A2) E(]| X [[) < +oc;
(A3) for all a > 0,

inf a,a) = pqo > 0;
lall=1, aesQo‘( ) = pa

(A4) Fg( X/Y) is a continuous operator which converges in proba-

bility to I'g(x/y) with VN rate;

(A6) (aj)j=1,. 4 are I'x-orthogonal, with I'x-norm equal to 1 be-
longing to S and verifying, for all w such that < I'xu,a; >= 0 and
that < I'xu,u >=1,

<T'gx/yu,u> < <Tgx/yyaz,az >= A < Ag;

Theorem 2 Under assumptions (A1)-(A6) the function v~ reaches its maz-
imum on S with probability converging to 1 when N grows to +oo.
Let then alY be a vector of S for which ¥V is maximum and which is such that

< FXa{V,al >=1. Then,
<Tx(a) —ay),ad —a; >—,0.

Remarks:

e For an understandable presentation, we introduce a particular type of
penalization but previous results can be found for other regularization
functionals satisfying the assumptions. For example, we can replace the
bilinear form [.,.] by another one which is similar to the one used in Ridge-
PDA (Hastie et al, 1995).



e Assumptions (A2), (A3) and (A4) are technical assumptions that en-
sure the existence and convergence for (aév)jzl_,wq: (A2) implies that T'Y
will converge to I'x at the /N rate; we can find in Leurgan et al (1993)
conditions that involve (A3). This assumption shows the purpose of regu-
larization: it controls the scaling of @, and, thanks to (A5), ensures that
the denominator of v~ doesn’t go too fast to 0. Finally (A5) gives a way

of choosing regularization parameter « (for pratical aspects see section
3.2).

3.2 Practical aspects

On a practical point of view, X has been observed at some points t1, to, ...,
tp (for a understandable presentation, we suppose that these observations have
been centered). The optimization of the penalized Rayleigh expression described
in Section 3.1 can be applied by using, for example, B-Splines (B;); to parame-
trize a¥:

a{v(t) = ZAlsz(t) = AlB

where B is the matrix containing the values of (B;(t)); at the points ¢y, t, ...,
tp.
Similarly, the matrix of observations X can be written in the form of B-Splines:

X=CB
Cl
with C = ; . Let B® be the vector containing the values D2B(t). If we
CN
use the slicing estimate of I'g(x/y for regression, we introduce,
foralh=1,...,H,
H{YleIh}
Y, =
H{YNGTh}

Then the problem of maximizing " is equivalent to maximizing

A'M,A

AMy o A

where M, is the estimator of I'p(x,y) obtained by the slicing approach :

H
M, = Z
h=1

"BB'C'Y,Y,CBB'

=z| 2

and where .
Mo = BB'C'CBB' + aB® 'B®



The first solution is the eigenvector, with Mx o-norm equal to 1, associated
with the largest eigenvalue of the matrix M )ElaMe. By pursuing the procedure
under othogonality constraints, we get that the other solutions are the M X,a-
orthonormal eigenvectors of M )}}aMe.

If we deal with classification, the same procedure is achieved by letting

Liyi=ny
Y, = :

Ly ~=ny

Finally we have to find the optimal value for a. This can be done, if the
sample we have is large enough (which is the case in the applications that we
present), by dividing it into two parts: we apply the previous procedure on the
first part to fin (aév ); and evaluate the error committed by Model (1) on the
second part; the best parameter is then chosen to minimize this error.

Remark : The estimation of I' g x/y can also be made by a kernel approach ;
the efficiency of this approach can even be better than those we have with the
slicing estimate (see Ferré and Yao (2004) for practical comparisons).

4 Neural network

4.1 Approximation by neural networks

After the EDR space is estimated, the purpose is to get an estimation of function
fin (1): we propose to use a feedforward neural network with one hidden layer.
This method (see, e.g., Bishop (1995) for a review on Neural Networks) is an
alternative to nonparametric regressions if the dimension of the EDR space is
too large. It has the advantage of working in any cases while nonparametric
methods, such as kernel or splines, face the curse of dimensionality.

The main interest of neural networks is their ability to approximate any
function with the desired precision (universal approximation); see, for instance,
Hornik (1991, 1993) for the multivariate context and Stinchcombe (1999) and
Rossi, Conan-Guez and Fleuret (2002) in the infinite dimensional one.

4.2 Consistency results

Neural Network approximations of functionals in infinite dimensional spaces
have been studied in Chen and Chen (1995), Sandberg and Xu (1996), Rossi,
Conan-Guez and Fleuret (2002) and Conan-Guez and Rossi (2002 and 2003).
Several strategies are available either by directly using the curves as inputs of
the feedforward neural networks or by first projecting the data onto a classical
functional basis (such as a spline basis, a Fourier basis, wavelets) or a basis
derived from the PCA of X. This latter approach is used by Thodberg (1995).

Our approach is similar but, instead of projecting the data onto a fixed basis
or a principal component basis, we project them onto the EDR space. The EDR
space behaves as an efficient subspace for the regression of Y on X and it is



a way to get a basis which takes into account the relationship between Y and
X. In fact, the data are projected onto an estimation of the EDR space, so the
accuracy of the projection and then the estimation of the optimal weights for
the neural network also depend on how good the EDR space is estimated.

We construct a perceptron (see Figure 2) with one hidden layer having

e as inputs, the coordinates of the projection of X on (a;)j=1,..4: < X, a1 >,
< X ag >

e ¢ neurons on the hidden layer (where gs is a parameter to be estimated);

e as outputs, one neuron for regression and H neurons for classification,
representing target Y.

[Figure 2 about here.]

The output of such a neural network is then

> w?g ( i wg’lj) < X,a; > +w§0)> where g is the activation function (for
example a sigmoid). The purpose of the training step is then to find w* which

minimizes a loss function L between the output of the neural network with
weights w = ((11)(2))1-:1}%(127 (w(l))jzl"”’q (wgo))izlw,,&) , and the target Y:

i ig Ji=1,....q20 \Wi

g2 q
w* =argmin E | L wgz)g Zwl(l]) < X,a; > —|—w§0) Y . (2)
i=1 j=1

Actually we obtain an estimation w} of w* by
N q2 q
i = argmind S (S0l (Sufl) < x> ul? ) e
n=1 i=1 j=1

White (1989) gives a consistency theorem for the weights of a neural networks
estimated by a set of iid observations. Since (aév ); is an estimation of the EDR
space deduced from the whole data set (X™,Y™),,, the inputs of our functional
perceptron used to determine w} do not satisfy the iid assumption and then
proper consistency result is then needed.

Let us introduce some notations: ¢ is the function from O x W (O is an
open set of Rt and W is a compact set of R(4+2)92) such as for all z = (u,y)

in O, ((z,w) = L( 2 wgz)g( ?:1 wg’lj)uj +w§0)) 7y); Z is the couple of
random variables ({< X,a; >};,Y) and {Z,},=1,. n are observations of Z;
finally, {Z} }n=1,....n are the couples of ({< X",aév >1};,Y™). In our context,

the consistency of the Multilayer Perceptron is given by the following theorem:



Theorem 3 Under assumptions (A1)-(A6) and the following assumptions

(A7) for all z in O, ((z,.) is continuous;

(A8) there is a measurable function ffrom O into R such that
for all z in O, for all w in W, |{(z,w)| < {(2) and E({(Z)) < 4+o0;

(A9) for all w in W, there exists C(w) > 0 such that, for all (x,y)
and (z',y") in O, |(((z,y),w) = C((z',y), w)| < C(w) | 2 -2

(A10) for all w in W, {(.,w) is measurable.

If W* is the set of minimizers of the problem (2) then

N——+oco
e

d(wx, W) » 0.

Remarks:

e This list of assumptions is, for example, checked by a perceptron with
one hidden layer and a sigmoid function g(z) = % on the hidden layer
associated with the mean squared error L(v,y) =| v —y ||%.

e Assumptions (A1)-(A6) ensure the convergence of (a});=1,. 4 to
(aj)j=1,...4 but they can be replaced by a list of assumptions implying the
same result. For example, we would have the same consistency result by
projecting the data on the estimated EDR space found by the functional
SIR presented in Ferré and Yao (2003 and 2004).

5 Applications

5.1 Tecator data

As already said, the Tecator data problem consists in predicting the fat content
of pieces of meat from a near infrared absorbance spectrum. We have N = 215
observations of (X,Y") where X is the spectrum of absorbance discretized at one
hundred points and Y is the lipid rate.

In order to compute the procedure described in section 3.2, we project the
data on a cubic Spline basis. Because of their smoothness, these data are very
well projected on a basis with 40 knots (actually, up to 40 knots, the interpola-
tion is exact); then, we used this projection for the computation when needed
and used the original data in the other cases. We tried several classical methods
in order to test the efficiency of SIR-NNr. The competitors are:

e STR-NNr: the functional SIR regularized by penalization, presented in
Section 3, pre-proceeds a neural network. The neural network training step
is made by early stopping procedure: the learning sample is divided into 3
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samples (training / validation / test); the training sample is used to train
the neural network, the validation sample for the early stopping procedure
and this training step is performed 10 times. The best performance of the
test samples is kept as the optimal weights;

e SIR-NNKk: here we use the smoothed functional inverse regression method
presented in Ferré and Yao (2003) as pre-processing to a neural network;
the purpose is to show the benefit of the regularization. The neural net-
work is also trained by early stopping;

¢ PCA-NN: in order to show the advantage of SIR, we compute a prin-
cipal component analysis (as Thodberg (1995)) before a neural network
procedure is used (a classical neural network while Thodberg uses a so-
phisticated bayesian neural network);

e NNf: this method is the functional neural network (the Spline projections
are used to represent the functional weights and inputs) described by Rossi
and Conan-Guez (2003);

e SIR-L: after projecting the data on the EDR space determined by regu-
larized SIR, we compute a linear regression in order to show the efficiency
of a neural network compared to a classical parametric method.

We also have to notice that classical nonparametric methods such as kernel can
not be used for this data set as the dimensionality of the EDR space is too large
(the value of ¢ is given in Table 1).

Before we compare the different methods and in order to limit computational
time, we determined the best parameters for each one : our sample is divided into
two parts: on the first one, we determine the values of (aév ); and of the weights
of the neural network for various values of «, ¢ and g. On the second part,
we determine the standard error of prediction (SEP): the "best" parameters are
those who minimize this SEP (see Table 1).

[Table 1 about here.|

Then, in order to see not only the error made by each method but also
its variability, we randomly build 50 samples divided as follows: the learning
sample contains 172 observations and the test sample contains 43. All five
methods are first trained on the learning sample (with their optimal parameters
pre-determined as described above) and the standard error of prediction (SEP)
is then performed on the test sample.

Figure 3 gives the boxplot of the test errors for the 50 samples and Table 2
gives a numerical description of the performances of the different methods.

[Figure 3 about here.]

[Table 2 about here.|
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These results show the excellent performances obtained by SIR-NNr: its
SEP average over the 50 samples is twice lower than any of the other competi-
tors. Moreover, this method garantees a good stability unlike the others. SIR
seems to be a very good pre-processing stage, as SIR-NNk also obtains good
performances. Then we have NNf but its rather good results suffer from a very
slow computational time. To show this, we give the computational time of each
method in Table 3. Clearly NNf is very expensive while SIR-L is very fast but
works poorly. Actually, it is closely related to the number of inputs: 42 for NNf,
10 for SIR-NNKk, 12 for PCA-NN and 20 for STR-NNr.

[Table 3 about here.]

5.2 Phoneme data

In this section, we compare our methodology with other approaches on a clas-
sification problem, namely the phoneme data. The data are log-periodograms
of a 32 ms duration corresponding to recorded speakers; it deals with the dis-
crimination of five speech frames corresponding to five phonemes transcribed as
follow: [sh] as in "she", [dc]] as in "dark", [iy] as in "she", [aa] as in "dark" and
[ao] as in "water". Finally, the data consist in 4 509 log-periodograms of a 256
length (see Figure 4).

[Figure 4 about here.]

We tried several classical methods in order to test the efficiency of SIR-NNr
which is compared with:

e SIR-NNp: a classical SIR as presented in Ferré and Yao (2003) as pre-
processing of a neural network: the purpose is to show the advantage of
regularization compared to a projection on a PCA basis;

e SIR-K: a regularized functional SIR where the function f is estimated by
a nonparametric kernel method;

e Ridge-PDA: the penalized discriminant analysis introduced in Hastie et
al. (1995) which uses ridge penalty;

¢ NPCD-PCA: a nonparametric method using kernel and semi-metrics
based on Principal Component Analysis and introduced by Ferraty and
Vieu (2003).

The optimal parameters for these methods are shown in Table 4.
[Table 4 about here.]

For the SIR stage, the dimension of the EDR space is 4. This can be seen
by looking at the projection of the data on the EDR space (for SIR-NNr, for
example, see Figure 5). We can see that only the fourth axis is able to separate
the phonems [aa] and [ao].

12



[Figure 5 about here.]

Then we randomly build 50 samples divided as follows: the learning sample
contains 1 735 log-periodograms (347 for each class) and the test sample contains
also 1 735 (347 for each class). All five methods are first trained on the learning
sample and the test error rate is then computed on the test sample. Figure 6
proposes the boxplot of the test error rates and Table 5 gives a description of
the performances of test error rates over the 50 samples.

[Figure 6 about here.]
[Table 5 about here.|

The results of SIR-NNr, SIR-NNp and SIR-K are very close. The beneficial
aspect of SIR is highlighted since those three methods work better than others
based on different projections of data. The advantage of regularization is also
revealed since it leads again to the best results. Then comes RPDA and finally
NPCD-PCA which provides the poorest performances. On the contrary, in
this low dimensional problem, neural networks seem to be less performant than
kernels and have a bigger variability (standard deviation is 0,56 for SIR-NNr and
only 0,40 for SIR-K): this problem can be removed by increasing the number of
training steps or by using more sophisticated architecture, but at the price of a
larger computational cost. Finally, if SIR-K obtains the best mean, SIR-NNr is
the method which reaches the best minima which shows its great potential.

In conclusion, both on regression and classification problems, regularized
SIR-NN is a competitive solution for functional problems: we can explain these
good results by noting that the procedure combines an efficient dimension re-
duction model and the great accuracy of a neural network, which is able to
approximate almost every function. Thus this model can be efficient both for
ill-posed problems thanks to the penalized functional and for problems with a
large dimensionality thanks to the neural network step. Finally it has another
great advantage: computational time is rather short and does not increase too
much with the number of observation points for the curves.

A  Proofs

Here we give main lines of the proofs of Theorems 2 and 3.

A.1 Theorem 2

The proof of this theorem is related to the one of Theorem 1 in Leurgan at
al. (1993) and only sketches are given.

Lemma 1: Using Central Limit Theorem, it is easy to show that if §V =
maz{[|T¥ — Tx||; H|Fg(X/Y) —I'ex/v)lll} and if the sequence (ky)n satisfies

VNky — 400 then
k&l(SN —p 0.
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Ezistence: Let Q,, be the bilinear form satisfying, for all f,¢gin S, Q.(f,g) =<
I'xf,g > +a[f,g]. We have for ain [0,1], Qo = (1 —a) <T'x .,. > +aQ; and
then, for all u such that || u[|=1, 1Qa(u,u) > (2 —1) < Txu,u > +Q1 > p
by the positiveness of I'x. Then, v/Np, > a/Np; and we have

VNpo — +00 . (3)
Then, by Lemma 1, noting AY =T'¥ — Ty,

1
lim P Q |AN|I < Zpa) ) =1.
Jdim_P(fwea 1A% < 300}

But, we have
N 1 N 1
we@ |IAY]l < 5pa} Cquw:Vaes, al=1, Qala,a) 2 5pa >0

and finally the right hand part of the previous equation has a probability con-
verging to 1 when N converges to +oc.

Let B(0,1) be the weak closure of {a € S QN (a,a) = 1} and ¢ be the
functional defined on {a € S QY (a,a) = 1} by

((a) =< Fg(x/y)ay a >

then ¢ can be extended to a uniformly continuous functional ¢ defined on B(0,1)
for the weak topology. Finally, provided that QX (a,a) > %pa, 5 reaches its
maximum on weak compact B(0,1) which concludes the proof of the existence
of (aff)j=1,..4-

Consistency: For the following we suppose that we stand on the set where
7™ has a maximum on S and reaches it.

Let Al be this maximum and A be the maximum of

(a)— <FE(X/y)CL,CL>
Tal®) = I'xa,a > +afa,d

on S; AY is well defined thanks to assumption (A3).
Ya(a)
Yo(a)

Considering we easily show that
AL — Aq. (4)
Then by proving that sup,cs [7¥ (a) — va(a)| —p 0 we can show that
ALY =AY =, 0. (5)
Finally, combining (4) and (5) we conclude that

ANV =, A (6)

14



Then using (6) we demonstrate that
(@) —p A = (@) (7)
Thanks to the conclusion of Theorem 1 we show that

NhrE P(< FE(X/y)al,a{V a; >=<Txa;,ad —a; >=0)=1.

Let ux be < Tx(ad —ay),al —a; >;if < FE(X/y)al,a{V —ay >=0, we have

T+ A apy

Aty(al) < — e

As )\;1)\2 < 1, the right hand side of the previous inequality is less than 1; but
Ay (alN) converges in probability to 1 by (7) so

1+ )\IIAQHN

—5 1
14+ pun P

and then we conclude with py —, 0.

A.2 Theorem 3

The proof of this theorem is close to the one found in Rossi and al. (2002)
and Conan-Guez and Rossi (2002); the main difference is in the fact that the
projection for the data is a random variable. The proof will be divided into two
parts:

We first prove that

A N N
< N;QZ&, - g (Zn,w) 2; (Zn,w) = B(C(Z,w))|.
By using dominated convergence theorem, the fact that ¥V is a compact set,
that {(z,.) is continuous for all z € O, and that {(.,w) is mesurable for all
w € W, we can show that, for all w € W,

lim E ( sup C(Z,w)) = E(((Z,w));

n—0 weWNB(w,u)
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Then let € be a real positive number, for all W € W, there is a u(w) such that

(9)

Wl o

weWNB(W,u(w)

E < sup ¢z, w)) < E((Z,%) +

[0}

(10)

w

E( inf qzm)zﬂdzw—

wEWNB(W,pu(0)

Using the law of large numbers we can deduce from (9) and (10) that for all
w € W, almost surely, there is a N(w) € N such that, for all N > N(w),

N
1
sup — ((Zn,w) —E((Z,w))| <e
wewnB(w,u(w)) | IV ; ( )~ B2, w)

As W is a compact set, we can find Wy, ..., w; such as {B(w;, u(W;))}i=1,....1
re-cover V. Using these sets we conclude that

| XN

N Zl C(Z’ruw) - E(C<Za U})) <k,

Using assumption (A8) we see that
320 (628 w) — ¢(Znsw)|
1/2

§C(w)[ 1<I‘N( —aj),a; —a; >]

As [IT¥ —Tx|| —=p 0and as, forall j =1,...,q, < I'x(a ;V—aj), ;V a; >—p 0,

we then conclude that

sup
wew

—p 0,

1 N
w2 (2w - (2, w)

which finally implies (8).

Secondly, let € be a positive real. According to the Dominated Convergence
Theorem, E({(Z,.)) is a continuous function which reaches its minimum m on
compact set WW. Then we can show that there is a n(e) > 0 such that, for all w
in W,

[E(C(Z,w)) =m[ <0 = dw, W) <e (11)
Then let Q, v be the following subset of

{wEQ

If w € Q, n then, as W is a compact set, we can find N € N, w} (w) € W which
minimizes 25:1 C(Z% (w), w). Let w* be in the closure of {w% }x; then by

AR
NZC(ZK/?’W) 7E(<(Z7w))

n=1

<

w3
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arguments similar to the ones used in the first part of the proof we show that,
for all w € 2, y and for all w € W,

E(((Z,w")) < E(C(z,w)) + 1,

which implies by the use of (11) that

Qv CHw d(w*(w), W) < ¢}

and this concludes the proof as imy_ 4o P(2, n) = 1.
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Parameter 1

Parameter 2

Parameter 8

PCA-NN ko — 25 @ — 12
(PCA dimension) (number of neurons)
NNf ¢ =18
(number of neurons)
SIR-NNr a=5 7= 20 7 — 10
(regularization of T'x) (SIR dimension) (number of neurons)
SIR-NNK h=05 — 10 7 =15
(kernel window) (SIR dimension) (number of neurons)
STR-L a—105 7 — 20

(regularization of I'x)

(SIR dimension)

Table 1: Best parameters for the five compared methods
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Mean | Median | Standard deviation | 150 quartile | Minimum
PCA-NN | 1,74 1,59 1,82 1,14 0,47
NNf 1,55 1,55 1,13 0,90 0,52
SIR-NNr | 0,68 0,66 0,16 0,56 0,44
SIR-NNk | 1,40 1,24 0,71 0,84 0,54
SIR-L 2,70 2,64 0,48 2,31 1,84

Table 2: Tecator data set: Description of the performances
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Methods PCA-NN | NNf | SIR-NNr | SIR-NNk | SIR-L
Computational time
(number of seconds 50 350 100 50 1

per sample)

Table 3: Computational time for the five compared methods
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Parameter 1

Parameter 2

Parameter 8

SIR-NNr a =10 qg=141 q2 = 15
(regularization of I'x) | (SIR dimension) | (number of neurons)
SIR-NNp k, =17 q=4 g2 = 12
(PCA dimension) (SIR dimension) | (number of neurons)
SIR-K a=1073 q=4 h=1
(regularization of I'x) | (SIR dimension) | (kernel bandwidth)
RPDA a =5 q=4
(regularization of I'x) | (PDA dimension)
NPCD-PCA kn =17 h =25

(PCA dimension)

(kernel window)

Table 4: Best parameters for the five compared methods
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Mean | Median | Standard deviation | 1°% quartile | Minimum
SIR-NNr 821 % | 8,16 % 0,56 % 7,90 % 6,74 %
SIR-K 8,09 % | 8,10 % 0,40 % 7,84 % 6,92 %
SIR-NNp 8,38 % | 8,24 % 0,59 % 7,95 % 7,20 %
RPDA 8,95 % | 8,99 % 0,54 % 8,70 % 7,20 %
NPCD-PCA | 9,78 % | 9,68 % 0,65 % 9,34 % 8,30 %

Table 5: Phonem Data: Test error rates
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