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1 Laboratory

The National Research Institute for Agriculture, Food and Environment (INRAE) is a
Public Scientific and Technical Research Establishment (EPST). It is the result of the
recent merger of the National Institute for Agricultural Research (INRA) and the Na-
tional Research Institute of Science and Technology for the Environment and Agriculture
(IRSTEA). It is under the joint aegis of the Ministry of Higher Education, Research, and
Innovation (MESRI) and the Ministry of Agriculture and Food (MAA). INRAE is also
beginning to closely collaborate with the Ministry for the Ecological and Inclusive Transi-
tion (MTES) via various partnership agreements. It is divided in 18 regional centres with
14 research divisions and has several missions:

– produce and disseminate knowledge to help solve major societal challenges,

– put this knowledge to work to foster innovation,

– provide expertise and lend support to public policies.

The sustainable development promotion is an overarching goal of the institute and
main research fields are agriculture, food and environment. The internship took place in
Toulouse Applied Mathematics and Informatics (MIAT) division. More precisely in the
Statistics and Algorithms for Biology (SaAB) team, which aims to develop mathemat-
ics, statistics and computer science methods in order to solve problems from the field of
molecular biology.
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2 Context and objective

The objective of the internship was the use of different statistical methods to reconstruct
the regulatory network of Bacillus subtilis from expression data. A ground truth net-
work (built by biologists) was also provided to allow for the comparison of the method
performances.

During the internship, different types of data were analysed: on one hand, the expres-
sion data of B. subtilis genes, and on the other hand, the regulatory network. In order to
understand the data set, definitions and context are given in this section.

2.1 Biological context

As the principal data used during the internship are the expression measures of the genes,
this section explains some biological and genetics concepts.

Deoxyribonucleic Acid (DNA)
The deoxyribonucleic acid (DNA) is the molecule that carries genetic information and
instructions for development, functioning, growth and reproduction of an organism. It is
made of two strands that coil around each other and form a double helix. Each strand is
a sequence of nucleotides and they are linked by covalent bonds between phosphate and
sugar groups alternating. These nucleotides are made of three elements:

– a phosphate group,

– a sugar group,

– a nitrogen base.

There are four types of nitrogen bases: adenine (A), thymine (T), guanine (G) and
cytosine (C). The bases of each strand are linked by pairing rule: adenine bonds with
thymine, and cytosine bonds with guanine as shown on Figure 2.

Figure 2: Structure of the DNA. By AutisticPsycho2, 2006, Wikimedia Commons (https://
commons.wikimedia.org/wiki/File:DNA-structure-and-bases.png)
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The strands of DNA encode biological information that allows messenger ribonucleic
acid (mRNA) synthesis by using the enzyme RNA polymerase and then translation of
these mRNA into proteins.

Ribonucleic acid (RNA)
The Ribonucleic acid (RNA) appears during the process of DNA transcription. It is made
of the same biological materials as DNA up to two differences: the thymine is replaced by
uracil (U) and the RNA is composed by a single strand. There are various types of RNA:

– the messenger RNA (mRNA) that carries the protein information;

– the transfer RNA (tRNA) that is involved in the translation of the mRNA in an
amino acid sequence;

– the ribosomal RNA (rRNA), principal component of ribosomes (i.e., the molecular
machine that translates mRNAs into proteins).

As shown on Figure 3, RNA is the result of the DNA transcription. Then, the mRNA is
translated by ribosomes and the tRNA is translated into an amino acid sequence which,
by folding, will form a functional protein. Thereby, RNA plays an essential role in protein
synthesis.

Figure 3: Protein synthesis process from DNA transcription to protein folding. By Kep17,
2020, Wikimedia Commons (https://commons.wikimedia.org/wiki/File:Summary_of_the_
protein_biosynthesis_process.png)

In this report, the expression is measured by the produced quantity of mRNA by using
tiling array. The principle of such an array is explain below, after that the description of
the DNA transcription for the specific case of bacteria is given.

Transcription mechanism for bacteria
The DNA transcription mechanism is special for bacteria since bacteria are prokaryotes
(organisms having cells without nucleus). Thereby, the first difference with the process
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for eukaryotes (organisms having cells with nucleus) is that DNA translation and tran-
scription are made at the same location (the cytoplasm) and simultaneously, whereas for
eukaryotes, DNA transcription occurs in the nucleus and translation in the cytoplasm.
Moreover, bacteria have only one type of RNA polymerase whereas there are three types
for eukaryotes.

Firstly, bacterial RNA polymerase associated with an adding subunit, called sigma
factor (σ factor), can recognize binding sequences in DNA. Those sequences are called
promoters and the binding of a σ factor initiates the transcription process. The presence
of σ factor is another difference with eukaryotes, which do not need them.

Many promoters control a sets of genes that work together: such structure is called an
operon, see Figure 4. The genes in an operon are transcribed as a group and have a single
promoter.

Figure 4: Structure of an operon.

Furthermore, an operon can contain regulatory DNA sequences that represent binding
sites for regulatory proteins, called transcription factors (TF). The TFs promote or inhibit
the transcription of a given operon and so control which genes are expressed and at which
level. Therefore, the regulation for a lot of genes is done by the transcription mechanism.

Besides, each operon can be turned on or turned off depending on the bacteria needs.
Some operons are necessary for the bacteria life: for example the operon that is related
to the bacteria flagellum is needed for the movement. The proteins that inhibit the
transcription are called repressors and they bind on sites called operators. On the contrary,
the proteins that increase the transcription of the operon are called activators. These
mechanisms are illustrated in Figure 5.

Tiling array
Tiling arrays are micro-array chips used to measure the expression of a large number of
genes simultaneously or to genotype multiple regions of a genome. Here, the aim is to
obtain a transcriptome mapping, that is to say, to recover to which extent each gene
is expressed. The principle is to measure the quantity of mRNA by using the pairing
properties of nucleotides. On the tiling array, there are microscopic spots and each spot
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Figure 5: Regulation of an operon by a repressor or an activator.

corresponds to a DNA sequence called a probe. If the target strand is complementary,
it will create covalent bonds with the DNA of the micro array spots. This induce a
fluorescence/radioactivity that permits the measurement of expression. Thereby, the more
fluorescent a spot is, the more expressed the gene corresponding to its probe is.

Now that biological definitions have been given, some notions for graph theory are
explained in the next section.

2.2 Graph theory

Some definitions are needed to ease the understanding of the topic. They are presented
in this section.

Graph
A graph, or network, is a pair G = (V,E) where:

– V is a set of vertices/nodes {xi} that can be connected or not;

– E ⊂ V × V is a set of paired vertices, called edges.

The edges can be oriented and some nodes can have an edge to themselves (called loop).
Graphs are sometimes weighted, and the (|V | × |V |)-matrix of edge weights is often noted
W .

Another way to represent a graph is by an adjacency matrix A of size N ×N where N
is the number of nodes. A non-zero coefficient of the matrix corresponds to an existing
edge in the graph. A is such that:

A =

{
1 if (xi, xj) ∈ E

0 otherwise
(1)
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In the weighted case, the adjacency matrix is exactly W . For undirected graphs, A should
be symmetric, i.e., A(xi, xj) = A(xj , xi).

Other definitions are given below to help understand the next sections of the report.

Graph properties

– Connectivity: a graph is said to be connected when any vertex can be reached from
any other by a path along the edges. If a graph is not connected, there are several
connected components that are maximum connected sub-graphs.

– Density: the density of a directed graph is the number of edges divided by the
number of pairs of vertices. For undirected graphs without loops, the number of
edges is divided by n(n−1)

2 with n the number of vertices.

Vertex properties

– Degree: the degree of a vertex is the number of edges adjacent to it, that is to say
the number of edges to which the vertex belongs. Vertices with high degrees are
called hubs. The degree is a measure of the vertex popularity.

– Betweenness: The betweenness of the vertex is the number of shortest paths between
two vertices that pass through it. It is a measure of the vertex importance in the
connectivity of the graph.

2.3 Data presentation

2.3.1 Expression Data

The data used in this internship comes from the bacteria Bacillus subtilis. This bacteria
is a model organism. It is one of the most studied organism because of its properties. It
is harmless for Humans but can serve as a model for the study of pathogenic bacteria of
the same nature, like Staphylococcus aureus. In particular, it secretes an enzyme used in
the industry. Also, it presents a large panel of growth phases and different living states
presented in Figure 6.

Those properties are relevant for Human, for example the competence is a special
property that is not present in all bacteria. It allows the bacteria to incorporate DNA
from another species in its own chromosomes without damages. It can be interesting when
an animal species produces a particular protein that is useful in the medical field. Instead
of using or even killing the individuals, an option can be to first try to find the part of
DNA that encodes such protein and then, to give this sequence to the bacteria in the
attempt to make it reproduce the given protein.

The B. subtilis genome contains 4,200 genes. Here, the data set includes gene ex-
pression collected from 269 experiments in the BaSysBio European project (Nicolas et al.
(2012)). In this project, biologists working on B. subtilis collectively defined a set of 104
environmental conditions to get as many expressed genes as possible. The used technology
to measure gene expression was tiling array, already described in section 2.1.

2.3.2 Network and inference

I was also given a graph that was a gene regulatory network (GRN). It aimed to represent
a set of genes that can interact with each other. In this case, the vertices are the genes
and the edges represent the regulation link between two genes.
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Figure 6: Growth phases of the bacteria B. subtilis

The given regulatory network is considered as the gene regulatory network of reference,
noted GRNr. It was built from the DBTBS database (Sierro et al., 2008), which gives
experimental information, and from the reading of the literature. Moreover, a marginal
part of the network was also obtained by a bioinformatics algorithm called RegPrecise
(Novichkov et al., 2010).

GRNr contains 3,977 vertices (genes) and 10,172 edges. Among these genes, there are
18 σ factors, 179 transcription factors, and 79 other mechanisms for regulation. The GRNr

is not connected and has two connected components. The largest connected component
contains 3,968 genes, which represent 99.77% of all vertices.

Moreover, there are genes with high values of degree and betweenness. Most of them
are σ factors and once again it confirms their importance in the regulation process. All of
them are present in the largest connected component of the GRNr.

The main purpose of the internship was the evaluation of various statistics methods in
the reconstruction of GRNr from the expression data described before. This part of the
work is called inference and the different methods used are presented below, in Section 4.

Since each method provides an inferred network, it allows the measure of their respective
performances by comparing the inferred networks and the GRNr.

7



3 Exploratory analysis of the data

Firstly, an exploratory analysis was done on the data to have a better understanding of
their distribution and to know how to manage them. This exploration was divided into
three parts: a descriptive analysis on expression data to start, followed by a principal com-
ponent analysis (PCA) and finally a visualization and analysis of the regulatory network
built by biologists.

3.1 Descriptive analysis

The data set contained the expression data of 3,977 genes collected from tiling arrays in
269 experiments conducted in 104 different conditions. A descriptive analysis was done
on these data to detect possible outliers. To do so, the minimum and maximum values
for each gene were plotted and none were found extreme so we deduced that there was no
outlier. The presence of missing values was also checked and there was none in the studied
set.

3.2 Principal component analysis

The second part of the exploration work was a principal component analysis (PCA) with
the 269 individuals representing the experiments and the 3,977 variables representing the
genes. This was done by using the PCA function of the FactoMineR package. The aim was
to summarize the initial data in a relevant way to be able to represent it in sub-spaces with
reduced dimensions. PCA results indicated that the expression data were in accordance
with biological knowledge: most of the groups of experiments were well separated on the
plot of individuals. In addition, no experiment was detected as an outlier.

3.3 Graph mining

The last part of the exploration was to visualize and analyse the given network. In order
to handle the structure of the graph, the package igraph was used for both visualization
and analysis. The regulatory network is not connected: it is made of 5 components, the
biggest one contains 3,968 genes and the other contain isolated genes. Its density is equal
to 0.0013, which means that it is sparse. Moreover, there are 136 loops in the GRNr that
shows the presence of genes that regulate themselves (see Figure 7).

Figure 7: GRNr representation
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After the first visualization of GRNr in Section 3.3, the aim was to detect important
genes in GRNr. To do so, the degree and betweenness of each nodes were calculated. The
distribution was plotted and the values were sorted to detect the genes with the highest
degrees and betweennesses.

As shown on Figure 8, GRNr has skewed degree and betweenness distributions (there is
a small number of genes with very high degree and betweenness, probably those implicated
in the regulation of many others and, on the contrary, there is a large number of genes with
small values of degree and betweenness that are probably those that are regulated but not
regulator). This was expected since, in general, GRN have this type of distributions.

(a) Degree (b) Betweenness

Figure 8: Degree (a) and betweenness (b) distribution of GRNr

Figure 9 shows the relation between degree and betweenness (in log-scales): most of
the time, a gene with a high value of its degree also has a high value of its betweenness.

Figure 9: Betweenness+1 as a function of degree for GRNr in logarithmic scales.

As a proof of their importance in the regulation, these genes were found to often be σ
factors. In particular, there was a σ factor named σA that was linked with 3,203 genes
over the 3,977 present in the network and is thus involved in the regulation of the majority
of the studied genes. Moreover, when we compared the degree distributions between σ
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factors and the other genes (see boxplot in Appendix 1.1), we saw that the degrees were
much larger for σ factors compared to other genes.
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4 Methods

In this part, we present the various methods used in order to infer a regulatory network
from expression data. We started with the tree-based methods, then we used the “naive
approach” based on Pearson correlation, followed by a partial correlation and information
theory approach (PCIT).

4.1 Tree based methods

The first used methods are based on regression trees and more precisely on Random
Forests. Thereby a definition of Trees in the statistical sense is given below. We also
introduce Bootstrap and Bagging that serve in the Random Forest method.

4.1.1 Trees

Global definition
Classification and regression tree is a non parametric method used in classification and re-
gression to predict a response variable Y from p explanatory variables denoted (Xi)i=1,...,p

observed on n individuals (Xj)j=1,...,n.
Trees are based on successive divisions of the data according to an explanatory variable

at each node. For a node based on Xi, the split is defined by a threshold or a split into
two groups of modalities depending on the fact that Xi is numeric or categorical. The
split is binary and gives two child nodes.

There are some requirements in this method:

– definition of a criterion to select the best split at each node κ;

– definition of a rule to end the divisions and obtain a leaf.

Choose the best split comes down to finding the explanatory variable Xi and the
threshold t that minimize the sum of child heterogeneity defined below. The given problem
is:

argmin
(i,t)

DκL(i, t) +DκR(i, t) (2)

where the threshold t defines resulting sub-regions, κL(i, t) and κR(i, t), called child nodes
and such that:

κL(i, t) = {j : Xi
j ≤ t}, κR(i, t) = {j : Xi

j > t}

This splitting procedure is done for every node κ until the stopping rule is satisfied.
Since expression data are numerical, we use regression trees in our application.

Thereby, the selection criterion and stopping rule are given for this case.

Selection criterion for regression trees
The heterogeneity is a non negative function defined for each node κ. It is differently
defined in regression and classification. In regression, the heterogeneity criterion is the
variance, given in Equation (3). The heterogeneity is equal to 0 when the given node
is homogeneous, which means that all individuals have the same value for the response
variable Y . On the contrary, the heterogeneity increases when values of Y for individuals
of the nodes have a large variance.

Dκ =
∑
k∈κ

(Yk − Y κ)
2 with Y κ =

1

|κ|
∑
k∈κ

Yk (3)
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The selection criterion corresponds to the maximization of the decrease in heterogeneity
as described in Equation (4), where κL (left node) and κR (right node) are the child nodes
of κ induced by a given split on a given variable Xi.

max
{Splits of Xi; i=1,...,p}

Dκ − (DκL +DκR) (4)

Solving this problem is equivalent to solving the one presented in Equation (2).

Stopping rule
The stopping rule is satisfied when a given node κ is homogeneous or when it contains less
individuals than a set value (generally between 1 and 5) to avoid too fine splitting. The
defined final nodes of each tree are called leaves and contain the predicted values of Y .

The predictions are done by a majority vote for classification and by computing the
mean estimate of all trees for regression:

∀x, f̂B(x) = 1
B

∑B
b=1 f̂zb(x)

However, trees are unstable and known to produce very different predictions with minimal
changes in the training data set, especially when the growth of the trees makes them deep,
as it is the case for the stopping rule presented in this section.

Bootstrap and Bagging
The principle of Bootstrap is to randomly draw data sets of size n from the original sample,
where n is the number of observations of this sample (here, n = 269). In this way, the
distribution of the data in bootstrap samples remains the same as in the original data.
The drawing is done with replacement so the drawn sets can have duplicated values. This
technique allows to obtain new data sets from the original one and to fit a model with
each bootstrap sample that gives a predicted value, Ynew for any given new observation of
(Xi)i, (X

i
new)i.

Once the bootstrap samples built and the models that come with them fitted, an
aggregation is done. The predictions of each model are combined by a majority vote for
classification and by calculating an average for regression. This procedure is called the
bootstrap aggregation or bagging.

Moreover, for each bootstrap sample, an Out Of Bag (OOB) sample can be defined,
which contains the observations that were not drawn in the bootstrap sample.

The explanatory diagram on Figure (10) summarizes the process.

4.1.2 Original Random Forests

Instead of using individual trees, Random Forest uses a collection of the given model to
predict the response Y by aggregating them with bagging. As the bootstrap samples are
built on the same original sample, the predictors obtained for each bootstrap samples are
not independent.

To improve bagging, a random component is introduced in the “random forest” method.
More precisely, at each node, a random choice of m variables over the p available predictors
is performed to make the aggregated trees more independent and the best split is chosen
among these m variables only. The method is described below in Algorithm 1.

There are important hyper-parameters of the model:

– B, the number of bootstrap samples built from original data that is the number of
individual trees that are fitted;

12



Figure 10: Principle of bootstrap aggregation or Bagging

– m the number of variables drawn randomly before each split. By default, in regres-
sion problems it is set to p/3.

Unlike trees, Random Forests are not easy to interpret and indices of importance are
defined for each explanatory variable to find which variables are the best predictors.

Variable Importance

To evaluate the importance of a variable in the forest, an “Importance” measure called
Mean Decrease Accuracy (MDA) has been defined. The aim is to measure the decrease
of accuracy induced by a permutation of data by averaging it over all the trees f̂zb to
evaluate the influence of a given variable on the predictions.

More precisely, for a given variable Xi and for the bth tree of the forest, we use the
OOB sample, Sb, and define Si

b, the same sample in which the values of Xi are randomly
permuted. Defining Rn as the percentage of well predicted values by a given tree in the
OOB sample,

Rn(f̂zb , S) =
1

Card(S)

∑
j: (Xj ,Yj)∈S

(Yj − f̂zb(Xj))
2. (5)
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Algorithm 1 Random Forests (regression case)

Let Z = (X1, Y1), ..., (Xn, Yn) a learning sample
for b = 1 to B do

Take a bootstrap sample zb from Z
Fit a tree f̂zb from this sample in which the search for each optimal split is preceded
by a random selection of a subset of m predictors.

end for
Calculate the mean estimate such as ∀x, f̂B(x) = 1

B

∑B
b=1 f̂zb(x).

the MDA is obtained by the average of decrease in accuracy calculated for all aggregated
trees on original and permuted OOB samples:

MDA(Xi) =
1

B

B∑
b=1

[Rn(f̂zb , Sb)−Rn(f̂zb , S
i
b)]. (6)

Xi is going to be all the more important if the index is large. Indeed, large values
indicate that the permutation changes the predictions and thus, that the variable Xi has
an influence on predicted values.

4.1.3 Extremely Randomized Trees (Extra-Trees)

Many variants of the original random forest presented in Section 4.1.2 exist in the liter-
ature. Among them, we also used “Extremely Randomized Trees”. There are two main
differences:

– the Extra Trees use the whole initial sample multiple times instead of bootstrap
samples;

– splits are made randomly by drawing uniformly at random several pairs made up of
a random explanatory variable and a random threshold. The pair that maximizes
the decrease in heterogeneity is considered as the best one and hence it defines the
split.

4.1.4 GENIE3 package

In this section, we present an adaptation of the random forest method that is used to infer
networks. This method is implemented in the package GENIE3 (Huynh-Thu et al., 2010).

In the described context, the objective is to infer a gene regulatory network: the GRNr

presented in Section 2.3.2. The expression of each gene can be seen as the value to predict
and thus, as the response variable of a regression tree. Thereby, for each gene (variable),
we fit B regression trees f̂zb and consequently, a random forest, RF :

∀Xi, Xi = RF ({Xk, ∀k ̸= i})

All genes different from the one to predict are considered as predictors in the model by
default. Moreover, since k ̸= i, tree-based methods can not recover loop in regulation.

Random forests are fitted for every possible gene to predict, (Xi)i, and edges of the final
network correspond to all pairs of predictors and predicted variables having the largest
importance overall (“largest” is defined by a user-chosen threshold of the importance
values). In addition, the importance in GENIE3 is not exactly MDA but an adaptation of
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this quantity that also accounts for the position of the variable in the different splits of
the trees.

Finally, note that the presented method is parameterized by various settings with dif-
ferent roles. Some of the settings are related to the used method and others are hyper-
parameters of this method. The most important settings are:

– the method: RF (Random Forest) by default or ET (Extra Trees);

– the number of variables, m, to draw randomly (for Random Forests) or the number
of random possible splits to generate (for Extra Trees), before defining a split. By
default it is equal to

√
p, with p the number of candidate regulators;

– the number of trees, B, by default it is equal to 1,000.

Other options allow to pass a regulator list and a target list. The first option is going to
reduce the space of explanatory variables. The second one permits to reduce the number
of variables to predict, therefore the number of random forests that have to be computed.
In addition, the method is implemented such that it allows for parallel computation.

Finally, the function GENIE3 returns a weighted adjacency matrix W , where Wk,i is
the importance of the link between gene k (regulatory gene) and gene i (target gene). A
threshold can thus be chosen to keep the highest weights. We chose this value so as to
obtain a number of inferred edges close to the number of edges in GRNr.

Different tests were done to obtain the best possible inferred network with the tree-
based methods. The values for m and B remained the default values for all of our tests.
Variations of the settings were:

– both RF and ET were run on scaled and non-scaled data;

– both RF and ET were run with two different random seeds to assess reproducibility;

– RF was run with a restricted regulator list as input, which contained the list of σ
factors;

– RF was run with another restricted regulator list, which contained the list of genes
identified as regulators in our data.

4.2 Methods based on correlations

The second type of method that we used is based on correlations between variables.

4.2.1 Network inference based on correlation

The first method used was what we call the “naive approach” (also known as “relevance
network” in the litterature (Butte and Kohane, 2000);(Butte and Kohane, 1999)). It
consists in calculating the Pearson correlation between every pair of genes. Correlations
are then thresholded by a user-defined value (keeping only correlations whose absolute
value are above a given threshold). The kept pairs of genes defines the inferred edges.
This method is close to the one implemented in the R package WGCNA (Langfelder and
Horvath, 2008), which is frequently used by biologists for network inference.

Nevertheless, this approach is not completely satisfying since it does not detect the
difference between “indirect” and “direct” correlations. As we see on Figure 11, when Xi

and Xi′ are directly regulated by a same gene Xk, the Pearson correlation between Xi and
Xi′ is expected to be large, on the same order of magnitude that the correlation between
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Figure 11: Example illustrating the limit of the use of the Pearson correlation.

Xi and Xk. The method is thus not able to distinguish between the direct link between
Xk and Xi and the indirect link between Xi and Xi′ . In a Gaussian framework, partial
correlations are used instead of Pearson correlations to solve this issue.

4.2.2 Gaussian Graphical Model

Gaussian Graphical Models (GGM) assume that the vector X = (Xi)j=1,...,n containing
gene expression is a Gaussian vector. This vector represents a centered multivariate normal
distribution in Rp, more formally: X ∼ N (0p,Σ), where 0p is the null vector of Rp and Σ
the positive definite covariance matrix of X.

The aim of GGM is to capture relevant partial correlations between two variables Xi

and Xi′ given all the other variables of the data set. The partial correlation matrix,
denoted by C ∈ Mp×p, is defined by:

∀i ̸= i′ : i, i′ ∈ {1, . . . , p}, Ci,i′ = Cor(Xi, Xi′ |{Xk}k ̸=i,i′)

Under given assumptions, one can prove (Edwards, 1995) that it exists a relation be-
tween S = Σ−1 and C such as:

Ci,i′ = −
Si,i′√
Si,iSi′,i′

(7)

Thereby, the computation of the inverse of the covariance matrix, S, is needed to cal-
culate the partial correlation. However, the (population) covariance matrix, Σ is unknown
and, in high dimension (p ≫ n), its empirical estimate, Σ̂, obtained from the matrix of
real observations (Xj)j=1,...,n is non-invertible (or ill-conditioned when p is smaller but
close to n).

The problem of the estimation of the partial correlations is also equivalent to linear
models. Indeed, given the linear model,

Xi =
∑
k ̸=i

βi,kX
k + ϵ (8)

we can demonstrate that

βi,i′ = 0 ⇐⇒ Ci,i′ = 0 ⇐⇒ Si,i′ = 0.

However, under this alternative framework, the problem remains the same: in the high
dimension setting, the linear model of (8) is ill-posed and can not be estimated (i.e., we
can not find unique estimates of βi,k, β̂i,k, from the observation (Xi

j)j).
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Two types of methods exist to overcome the high dimension issue: regularization and
penalization methods.

Regularization consists in making the estimator Σ̂ well-conditionned by adding a con-
stant λ > 0 at each eigenvalues and then by taking the inverse:

Ŝ = (Σ̂ + λI)−1

This solution is equivalent to solving a modified least square estimation of the linear model
(8):

β̂ = argmin
βi.

n∑
j=1

[
Y i
j − (X−i

j )⊤βi.

]2
+ λ∥βi.∥22

where:

– (X−i
j ) ∈ Rp−1 is the vector Xj without its ith component,

– βi. = (βi,k)k ̸=i ∈ Rp−1.

Usually, regularization methods return estimates that are all non-zero. A post-
processing step is usually necessary to keep only the largest estimated partial correlations.
This method is implemented in the package GeneNet (Schäfer and Strimmer, 2005).

In penalization methods, the estimator of Σ is not modified a l1 penalization term is
used (instead of l2) to modify the least square estimation problem:

β̂ = argmin
βi.

n∑
j=1

[
Y i
j − (X−i

j )⊤βi.

]2
+ λ∥β∥1

where λ > 0 is the regularization hyperparameters.
When using l1 penalization, some β̂i,k are forced to be directly estimated as zero.
Two approaches exist to solve the previous problem: one is a global optimization

framework, implemented in the package glasso (Friedman et al., 2008), and the other,
by (Meinshausen and Bühlman, 2006), uses independent Lasso regressions. Both are
implemented in the package huge.

However, these methods are time and memory needing. Hence, we chose to perform
the inference with another method inspired by GGM and described in the next section.

4.2.3 Partial correlation and information theory (PCIT)

This second method is used for the inference and is based on partial correlations and on
information theory. The aim is to identify relevant associations between genes that can
correspond to edges in the inferred network. The main difference between PCIT and GGM
is that only partial correlations of triplets of genes are computed, which is computationally
easier. Nevertheless, the normality assumption is still relevant for PCIT.

The PCIT algorithm proceeds in two different steps to determine if there is a connection
between two genes Xi and Xi′ . First, the partial correlation coefficients are computed for
all trio of genes formed by Xi, Xi′ and Xk. The expression of such coefficient is given in
Equation(9). In fact, three Pearson correlation coefficients and three partial correlation
coefficients are calculated each time we put a new Xk. Finally a local tolerance level
ϵk is calculated with those partial correlation coefficients and the Pearson correlation
coefficients, the formula is given in Equation(10). A condition is defined to establish a
connection or not between Xi and Xi′ . More formally:
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Step 1
First-order partial correlation coefficients are computed for every trio of genes Xi, Xi′ and
Xk. The given formula for partial correlation coefficient between Xi and Xi′ given Xk,
denoted rii′,k, is:

rii′,k =
rii′ − rikri′k√

(1− r2ik)(1− r2i′k)
(9)

Where rii′ , rik and ri′k represent the Pearson correlation coefficients between respectively
Xi and Xi′ , Xi and Xk, Xi′ and Xk. The given formula is:

rii′ =
Cov(Xi,Xi′ )

σiσi′
,

with σi and σi′ the standard deviation of variables Xi and Xi′ . rik and ri′k are calculated
in the same way. This value gives the strength of the relationship between Xi and Xi′

that is uncorrelated with Xk. Similarly, rik,i′ and ri′k,i are obtained.

Step 2
A local threshold is calculated for every trio of genes in order to capture relevant associa-
tions. It is the ratio of partial to direct (Pearson) correlations. It is noted ϵk and is given
by the next equation:

ϵk =
1

3

(rii′,k
rii′

+
rik,i′

rik
+

ri′k,i
ri′k

)
. (10)

Then PCIT deduces that there is an edge between Xi and Xi′ if and only if:

∀ k ̸= i, i′, |rii′ | > |ϵk rik| or |rii′ | > |ϵk ri′k| (11)

The two described steps are repeated for every pair of genes in order to capture the
meaningful gene to gene associations defining inferred edges.

4.2.4 PCIT package

The previous algorithm is implemented in the package PCIT (Reverter and K. F. Chan,
2008).

The used function takes the correlation matrix of the expression data as input and
applies the PCIT algorithm on it. The output is a list with linear indices of the correlation
matrix that indicates the pair of genes that verify the condition described in Equation(11).
Every pair of genes found by PCIT defines an edge in the inferred network and so an
inferred graph is obtained.

There are some options for parallelization but we did not use them because the running
time on our data is short. As for the tree-based approach, three different simulations were
done to obtain the best possible inferred network:

– The first simulation used default settings in PCIT function;

– The second simulation used the option “max” for the setting tol of the PCIT function,
corresponding to take the maximum of the three components of the right hand term
of (10);

– The last one was a variant of the first one where we used biological knowledge and
restricted the final graph to the edges adjacent to σ factors.
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4.3 Bayesian network approach

In this section, the third and last approach studied during the internship is presented:
the Bayesian Networks. Unfortunately, due to a lack of time, I was only able to learn the
general concepts for this method but not to use it on the datasets.

4.3.1 Global description

A Bayesian network (BN) is a probabilistic graphical model that represents the conditional
dependencies of a set of random variables (vertices) with a directed acyclic graph (DAG).
It can be discrete or continuous according to the nature of the variables. There are two
ways of seeing a BN, the DAG gives a visual representation while the probabilities linked
to dependencies between variables allow the interpretation of connections.

Therefore, to construct a BN we need to define two different objects:

– a DAG, which is a graph G = (V,E) also called the structure of the model;

– the probability tables for each variable conditionally to its causes also called the
parameters of the model.

Both objects can be defined by experts or computed from the given data but in general,
the structure come from expert knowledge and parameters are computed from observed
data. In network inference, however, the DAG is what is learned from observed data, it
represents the conditional independence between variables.

The aim of such representation is to describe the joint probability of the given set of
vertices,

P(V ) = ΠXi∈V P(Xi| pa(Xi)),

with pa(Xi) the parents of nodeXi in the DAG. Hence, given the DAG and the distribution
of every node conditional to its parent, the overall distribution of the nodes is also known.

In our work, we had to consider discrete BN, where the variables (Xi)i are assumed to
take discrete values. Since, in our case, (Xi)i correspond to gene expression, a discretiza-
tion step is required to transform the continuous values into discrete ones. This step is
presented in Section 4.3.3.

4.3.2 Inference methods

As the objective of our work is to infer networks, methods used for structure learning in
BN are briefly described in this section.

There are three types of algorithms to search the structure of a DAG from the data:

– Constraint-based algorithms as inductive causation (IC) (Verma and Pearl, 1991);

– Score-based algorithms (Koller and Friedman, 2009);

– Hybrids algorithms combining the previous two methods as Sparse Candidate (SC)
(Friedman et al., 1999) and Max-Min-Hill-Climbing (MMHC) (Tsamardinos et al.,
2006).

The one chosen here is the method based on the optimization of a scoring function
(Trösser et al., 2021).

The principle is to attribute a score to each DAG explored by the method and to chose
the one which maximizes the scoring function. In general, the DAG is initially empty and
as iterations progress, edges are added to maximize the chosen score.
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There are two main scores used for networks: the BIC (Bayesian Information Criterion)
and the BDeu (Bayesian Dirichlet equivalent uniform), both based on the model likelihood.
For both scores, two DAGs that represent the same conditional independence set have the
same score.

4.3.3 Application

As explained before, we had to discretize the gene expressions before being able to use
the BN model implemented by the SAaB team. It was decided to discretize them all in
maximum 3 classes depending, for each gene, on how many modes were present in the
expression distribution.

4.4 Evaluation of the methods

In this section, the evaluation criteria used to compare the methods are presented. Indeed,
the various methods give various inferred network denoted by GRNi and we have to
compare them to GRNr.

4.4.1 Global comparison

To compare the real and inferred networks in a global way, various elements are analysed
for each inferred network:

– the connectivity and the density (Section 2.2);

– the number of edges;

– the number of genes in the largest connected component;

– the number of edges common between GRNr and GRNi, to know how many edges
are recovered by the tested inference methods.

By using edges common to GRNr and GRNi we can compute the precision and recall
associated with each method. On the one hand, the “precision” measures the quality
of inferred edges by comparing edges common to GRNr and GRNi and edges of GRNi

(inferred edges).

P =
number of common edges

number of inferred edges

On the other hand, the “recall” measures the capacity of the inference method to
recover the true edges by comparing edges common to GRNr and GRNi and edges of
GRNr (real edges).

R =
number of common edges

number of edges in GRNr

4.4.2 Comparison of vertex properties

Then we look at the vertex properties in more details. The aim of studying the vertices
properties in each network is to see if the inference methods allow to recover the hubs or
the other important vertices of GRNr. To do so, the degree and the betweenness of each
vertex are computed for each inferred network and their distribution is compared to the
one obtained for GRNr.
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Degree and betweenness distributions
First, we compare the distributions: in general, GRNs have skewed degree and betweenness
distributions. The comparison of these distributions allows us to intuit the resemblances
or divergences in the structure. We also plotted the betweenness as a function of the
degree to assess if there is a relation between these two quantities.

Wilcoxon-Mann-Whitney test
Another way to see if the vertex properties are preserved is to perform a Wilcoxon-Mann-
Whitney test to compare the rankings of the distribution for a given vertex characteristics.

Ranks are computed both for degrees and betweennesses and the Wilcoxon-Mann-
Whitney test is used to compare ranks obtained in GRNr and ranks obtained in GRNi:
tested H0 hypothesis is thus “Ranks are identical in GRNr and GRNi”.

Precision and Recall for σ factors After having calculated the global “precision”
and “recall”, we calculated P and R for each σ factors by using three different methods.
Let us denote a given σ factor by σf :

– First method (M1): P is defined as the number of common edges afferent to σf
in GRNr and GRNi divided by the number of edges afferent to σf in GRNi. R is
defined as the number of common edges afferent to σf in both networks divided by
the number of edges afferent to σf in GRNr;

Figure 12: Example illustrating how M1 (afferent edges) works.

– Second method (M2): Sub-networks containing vertices afferent to σf in GRNr

are extracted in GRNr and GRNi. P is defined as the number of edges common to
the two given sub-networks divided by the number of edges in the sub-network of
GRNi. R is defined as the number of edges common to the two given sub-networks
divided by the number of edges in the sub-network of GRNr;

Figure 13: Example illustrating how M2 (afferent nodes from GRNr) works.
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– Third method (M3): Sub-networks containing vertices afferent to σf in GRNr and
GRNi. P is defined as the number of edges common to both sub-networks divided
by the number of edges in the sub-network extracted from GRNi. R is defined as
the number of edges common to both sub-networks divided by the number of edges
in the sub-network extracted from GRNr.

Figure 14: Example illustrating how M3 (union of afferent nodes) works.

The values of R are similar in the second and third methods since only edges between
nodes connected to σf differ. To represent the results, we used plot that give the precision
as a function of the recall.

4.4.3 Clustering similarities

The comparison of GRNr and inferred networks was also done by comparing the results
of a node clustering algorithm.

In the graph context, a clustering consists in grouping a set of vertices in such a way
that vertices of a same group are more similar with each other than with vertices of
another group. Each obtained group of vertices is called a “cluster”, a “community” or a
“module”.

To perform the clustering, several approaches exist:

– the optimization of a quality criterion;

– the spectral clustering;

– model-based clusterings.

The method used in our study is the first one with a criterion named the modularity
(Newman and Girvan, 2004). It is a metric that measures the quality of a given node
clustering. For a number K of clusters, the principle is to find the partition of vertices
(C1, . . . , CK) which maximizes the following criterion:

Q(C1, . . . , CK) =
1

2m

K∑
k=1

∑
xi,xj∈Ck

(Aij − Pij),

with

– Aij the coefficients of the adjacency matrix associated of the GRN;

– Pij the coefficient of the adjacency matrix of a graph with same degree distribution,
corresponding to a “null” model;

– 2m the number of edges of the GRN.
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More precisely, we have:

Pij =
didj
2m

,

where di and dj represent the degrees of node xi and xj . Hence, Q increases when (xi, xj)
are in the same cluster and Aij ≫ Pij . A high value of the modularity indicates that
the connections are dense within a cluster and that the connections are sparser between
clusters and the value of P is designed so that edges afferent to nodes with very high degree
account less to inscrease modularity than edges afferent to nodes with small degree.

As the optimization of the modularity is NP-hard to solve, most methods using the
modularity produces an approximated solution. The chosen approach is a multi-level
greedy approach named the Louvain algorithm (Blondel et al., 2008).

Clusters of GRNr and GRNi are then compared by computing the Normalized Mutual
Information (NMI) and the Adjusted Rand Index (ARI),two measures of similarity be-
tween clusterings. The more these indices are close to one, the more the compared clusters
are similar.

In addition, cluster qualities are obtained by computing precision and recall for each
cluster in GNRi. Doing so means that the subgraph of GNRr made from the vertices in
the studied GNRi cluster is extracted and used as a reference.

Clusters are finally explored in deeper details from a more biological point of view:
in particular, the distribution of all regulatory gene combinations is computed for each
cluster. The aim is to assess if the genes in a given cluster mostly share common regulators
(which would give a biological meaning to the clusters).
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5 Results and comparison of methods

The results for each method are presented in this section. Then a comparison is done by
using different metrics and indices presented in Section 4.4. Analysis are slightly different
from an inferred graph to another but globally we proceeded in the same way.

5.1 Clustering on GRNr

In this section, we present the results of the clustering performed on GNRr.
The Louvain algorithm, as implemented in the package igraph, was performed on the

largest connected component of GRNr (containing 3,968 genes). 21 different clusters were
obtained (for a modularity equal to 0.51) and Table 1 gives the distribution of the number
of nodes in every cluster. In cluster 14 to 21, there were only 47 genes in total, which
represented only 1.18% of the genes in the largest connected component. The value of the
modularity (0.51) is one that is usually considered as good.

Cluster Number of genes Cluster Number of genes
1 219 12 168
2 1,286 13 57
3 184 14 5
4 284 15 5
5 332 16 15
6 586 17 7
7 307 18 5
8 327 19 2
9 106 20 4
10 36 21 4
11 29

Table 1: Distribution of the number of genes by cluster in GRNr.

To detect if the clusters were associated to particular biological mechanisms or to special
groups of genes, we looked at the distribution of the combinations of regulator in every
cluster. It appeared that in clusters 1 to 13 the majority of the combinations of regulator
contained σA. For example, in the biggest cluster (number 2), more than 60% of the genes
were regulated only by this σ factor as we see in Figure 15. Nevertheless, there was a
lot of combinations of regulator that were only found once and concerned less than one
percent of the genes in the cluster.

5.2 Inferred networks with tree-based methods

First type of method used to infer GRNr were the tree-based ones.
In the present section, we restrict ourselves to the best network obtained from GENIE3,

which turned out to be the one based on random forest (and not on extra trees), with
unscaled expressions and where the predictors were restricted to be chosen within 18 σ
factors only. This network will be named GRNRF in the following and the threshold
applied on importance was 0.09.

GRNRF had 10,799 edges (density ∼ 0, 1%, identical to the one of GRNr, by design).
It is not connected and its largest connected component contained 3,918 vertices. Over
the 10,799 inferred edges, 2,133 were common to GRNr. This number represented 20.97%
of the edges in GRNr (Precision, P ) and 19.75% of the edges of GRNRF (Recall, R).
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Figure 15: Distribution of the combinations of regulators in cluster 2 of GRNr.

P = 0.2097 and R = 0.1975

These values are usually considered as good for the network inference problem (especially
at genome scale).

The distributions of degree and betweenness in GRNRF (Figure 16) were very similar
to the ones of GRNr (Figure 8), even if the highest values were very different (largest
degree for GRNRF: 1,706 – largest degree for GRNr: 3,203).

(a) Degree (b) Betweenness

Figure 16: Degree (a) and betweenness (b) distribution of GRNRF

However, the results of rank tests on degree and betweenness were not conclusive since
the p-values were too high: 0.72 for the degree test and 0.34 for the betweenness test.
Thereby, we could not say anything about the similarities in ranks between GRNr and
GRNRF.

In addition, Appendix 2.1 gives the precision as a function of the recall for σ factors
obtained with the three methods described in Section 4.4.2. We observed that, depending
on the method used to calculate P and R, the values were different. With the first method
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the tendency was that σ factors had precision below 0.5, except for σA that have a precision
neat to one and a recall near to zero. Nevertheless, there were σ factors for which we had
value such as:

P ∈ [0.2; 0.5] and R ∈ [0.35; 0.6].

These values can be considered as good for inference problem in the given context. The σ
factors concerned by these values were σB, σE , σF , σG and σK (spoIIIC and spoIVCB).
These σ factors are known to be implied in the sporulation phase excepts for σB implied
in stress management.

6 clusters were found in GRNRF and the distribution of the number of vertices in every
cluster is given in Table 2. Unlike GRNr, there were no clusters containing very few genes.
The modularity associated to this clustering was equal to (-0.01) which can be considered
as bad. Moreover, the small values of precision and recall showed that the quality and the
quantity of recovered edges were bad.

Cluster Number of genes Precision Recall

1 524 0 0
2 1,087 0.07 0.03
3 614 0.01 0.01
4 754 0.05 0.03
5 860 0.03 0.03
6 103 0 0

Table 2: Distribution of the number of genes by cluster in GRNRF and precision/recall values by
cluster.

As in GRNr, we looked at the combination of regulators present in each cluster to
detect if there were any groups representing a biological mechanism. It appeared again
that σA was omnipresent in every cluster. However, when we looked in details the cluster
5 (Figure 17), there are a lot of genes regulated by the σ factors implied in the sporulation
phase with σA. In fact, σA alone regulated 40% of the 754 genes in cluster 4 and appeared
in all combination representing more than 1% of the genes classified in the cluster 4
(Appendix 2.2).

We computed the Normalized Mutual Information and the Adjusted Rand Index to
compare inferred and real clusters we obtained small values,

NMI = 0.017 and ARI = 0.008.

It signified that there were no similarities between the clusters made in GRNRF and in
GRNr.

Finally, we visualized the distribution of GRNr clusters in GRNRF clusters (Figure 18)
to see if there was a matching between them.

None of the inferred clusters corresponded to only one cluster of GRNr.

5.2.1 Other networks inferred by GENIE3

The results obtained for the other networks inferred by GENIE3 are recapitulated in
Appendix 2.3. There were similar whether the method used was Rf or ET and whether
data were scaled or no.
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Figure 17: Distribution of the combinations of regulators in cluster 5 of GRNRF.

Figure 18: Distribution of GRNr clusters in GRNRF clusters.

5.3 Inference by methods based on correlations

Second type of methods used to infer GRNr were the ones using correlations between
variables. We started with the inference based on Pearson correlations and continued
with the inference based on PCIT algorithm.
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5.3.1 Inferred network using Pearson correlations

In this section, we study the “relevance network” constructed by thresholding the Pearson
correlations from the correlation matrix. The threshold was set at 0.75 to obtain enough
genes in the largest connected component and compare it with GRNr. This network will
be named GRNcor in the following.

GRNcor had 222,051 edges (20 times more than in GRNr) and a density equal to 2.8%
(higher than in GRNr as a consequence). Over more than 200,000 inferred edges, 1,208
were commons to GRNr. By using this number, we were able to calculate the global
precision, P and recall, R:

P = 0.0054 and R = 0.1206

The value of precision allowed to deduce that this method inferred too much edges because
it was under 1%. Nevertheless, 12% of the edges in GRNr are recovered. Moreover, GRNcor

is not connected and its largest connected component contains 3,553 nodes.
This time, the distributions of degree and betweenness (Figure 19) were totally different

from the ones of GRNr (Figure 8). In fact, there were a lot of genes with high degree
and high betweenness because of the high number of edges. This came from the chosen
threshold that allowed to keep a lot of correlation even the ones that were indirect. Again,
the highest values were very different (largest degree for GRNcor: 581 -largest degree for
GRNr: 3,203).

(a) Degree (b) Betweenness

Figure 19: Degree (a) and betweenness (b) distribution of GRNcor.

However, a rank test was done for both vertices properties. As for the previous analysis,
the p-values were too high: 0.58 for the degree test and 0.81 for the betweenness test.
Nothing could be said on the similarities of ranks between GRNr and GRNcor.

Then, we observed the precision as a function of the recall for σ factors (Appendix 3.1)
for the three methods described above in Section 4.4.2. The results were not the same
depending on the method used to calculate P and R. The values were scattered for the
first method but for the second and the third we observed a great decrease of the precision
for almost all σ factors. Another remark could be done, the σ factors with largest recall
were σE , σF , σG and σK (spoIIIC and spoIVCB). It signifies that the recovering of their
edges was not that bad.

26 clusters were found in GRNcor and the distribution of vertices in each cluster is given
in Table 3. Like in GRNr there were clusters with very few genes: 15 clusters over the 26
found had less than 10 genes. By summing the number of genes for those 15 clusters we
obtained only 44 genes (1.11% of studied genes). Nevertheless, the modularity associated
with this clustering was equal to 0.59 which is considered as good.
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Cluster Number of genes Cluster Number of genes
1 823 14 18
2 563 15 2
3 1,107 16 2
4 125 17 2
5 95 18 88
6 232 19 3
7 403 20 2
8 6 21 3
9 36 22 2
10 18 23 2
11 4 24 3
12 2 25 3
13 5 26 3

Table 3: Distribution of the number of genes by cluster in GRNcor.

We also calculated the precision and recall for each clusters in Table 4. From cluster
13 to 26 the precision and recall were equal to zero. Moreover, cluster 12 had excellent
values but it contained only 2 genes so it was no relevant for the global inference. The
biggest clusters had small values of precision and recall so we deduced that the quality
and the quantity of inferred edges were bad.

Cluster Precision Recall
1 0.01 0.04
2 0.01 0.49
3 0 0.02
4 0.01 0.06
5 0.03 0.08
6 0.01 0.02
7 0.01 0.09
8 0.01 0
9 0.01 0.07
10 0.04 0.08
11 0.17 0.33
12 1 1
13 0 0
...

...
...

Table 4: Precision and Recall by cluster in GRNcor.

To know if the clusters represent any biological mechanism, the combination of regu-
lators were extracted. We observed only clusters with more than 40 genes to detect such
mechanism.

The cluster 2 (Figure 20) seemed to represent a part of the sporulation phase since
the majority of genes were regulated by combination of σE , σF , σG and σK (spoIIIC and
spoIVCB).

Another cluster that was remarkable was the cluster 4 (Appendix 3.2) in which a lot
of genes were regulated by σB alone or in combination. This cluster could represent the
phases where the bacteria was under stress.

The clustering of GRNr and GRNcor were compared by computing both indices pre-
sented in Section 4.4.3. Both values were small so we deduced that there were no similar-
ities between both clusterings.
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Figure 20: Distribution of the combinations of regulators in cluster 2 of GRNcor.

NMI = 0.049 and ARI = 0.024

Finally, in Figure 21 we visualized the distribution of GRNr clusters in GRNcor ones
(only the ones with more than ten genes) to see if there was a matching between clusters.

Figure 21: Distribution of GRNr clusters in GRNcor clusters.

As for the previous inferred network, none of the inferred clusters corresponded to only
one cluster of GRNr.
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5.3.2 Networks inferred by PCIT

In the present section, we restrict our analysis to the best network inferred with PCIT. It
is the one inferred with the option “max” for the setting tol. This network will be named
GRNpcit in the following.

GRNpcit had 320,214 edges (30 times more than in GRNr) and a density equal to 4.1%
(higher than in GRNr). The larger density was a consequence of the high number of edges
recovered by the method. Among the inferred edges, only 1,036 were commons to GRNr

and it gave a global precision P and a global recall R,

P = 0.0032 and R = 0.1035.

As for the previous inference method, this one inferred too much edges and the precision
tended to zero. However, 10% of the edges in GRNr were recovered. Unlike the others
inferred network, GRNpcit is connected and its largest connected component contained
3,977 vertices (all the studied genes).

By comparing the distributions of degree and betweenness with those of GRNr we
observed again a big difference. Unlike GRNr, for GRNpcit (Figure 22) there were a lot of
genes with large values of degree and betweenness and very few with small values. One
more time, the highest values are very different (largest degree for GRNpcit: 674 -largest
degree for GRNr: 3,203).

(a) Degree (b) Betweenness

Figure 22: Degree (a) and betweenness (b) distribution of GRNpcit.

A rank test was also done to determine if there were similarities between the degree
and betweenness ranks in GRNpcit and GRNr. It appeared that we could not conclude
since the p-values were too high. For the degree we had 0.87 and for the betweenness we
had 0.80 which was far above the usual level of 0.05.

Precision and recall were also computed for σ factors by the three described methods
(Section 4.4.2). The results are presented in Appendix 4.1 and as for GRNcor we had small
values of precision for method 2 and 3. The same σ factors appeared to have the good
values of precision and recall, the ones implied in the sporulation phase.

7 clusters were found in GRNpcit and the distribution of the vertices in each cluster
and the precision/recall by cluster are given in Table 5.

As we had a very large number of inferred edges, the values of precision tended to zero.
Nevertheless, for clusters 5 and 6 we had good values of recall so 30% of the recovered
edges were effectively in GRNr.

To verify if the clusters represented any known biological mechanism, we looked at
the combination of regulators present in each one of them. We remarked the omnipres-
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Cluster Number of genes Precision Recall

1 538 0.01 0.04
2 701 0 0.03
3 1,161 0 0.04
4 737 0 0.03
5 560 0.01 0.31
6 113 0.02 0.27
7 167 0 0.02

Table 5: Distribution of the number of genes by cluster in GRNpcit and precision/recall values by
cluster.

ence of σA in the two first clusters which contains more than 1,200 genes combined (see
Appendix 4.2).

In cluster 5 (Figure ??), we observed 50% of genes regulated by at least one of the next
σ factors: σE , σF , σG and σK (spoIIIC and spoIVCB). Those σ factors being involved in
the sporulation, we could suppose that a part of the mechanism was recovered.

Finally, we computed the NMI and adjusted Rand index to detect similarities between
clustering of GRNr and GRNpcit. As both values were close to zero, we deduced that there
were no similarities between clusterings:

NMI = 0.028 and ARI = 0.005.

Finally, we visualized the distribution of GRNr clusters in GRNpcit clusters in Figure 23.
Again, none of the inferred clusters corresponded to only one cluster of GRNr.

Figure 23: Distribution of GRNr clusters in GRNpcit clusters.
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6 Conclusion

This internship provided networks inferred by various statistical methods. These networks
have been compared to GRNr, there is a summary of the results in Table 6:

Method Scaling Settings Nb Nb Precision Recall NMI ARI
common cluster (global) (global)
edges

GENIE RF No By default 259 40 0.02 0.03 0.06 0.02
3 RF Yes By default 252 38 0.02 0.02 0.06 0.03

RF No Reg list 1.517 14 0.13 0.15 0.03 0.01
RF No Change seed 263 43 0.02 0.03 0.07 0.02
RF No σ list 2.133 6 0.21 0.20 0.02 0.01
ET No By default 256 34 0.02 0.03 0.07 0.07
ET Yes By default 266 33 0.02 0.03 0.06 0.06

PCIT No By default 2.656 4 0 0.26 0.02 0.01
No Max 1.036 7 0 0.10 0.03 0.01

Pearson No Thresh. 0.75 1.208 26 0.01 0.12 0.04 0.02

Table 6: Table summarizing all inferences done during the internship

By looking at the table above, we notice that the inference of regulatory networks is
not an easy task. Indeed, with the relevance network and PCIT there are too much edges
and the methods infer a lot of wrong edges. At this stage, the best result is obtained with
GENIE3 but by passing the σ factor list to help the method. It means that only with the
expression data, the methods tested give bad results.

Future work

Other methods can be tested to recover GRNr as the Bayesian networks presented in
Section 4.3 for example. One of the biggest advantage of this method is that the inferred
network is oriented. It signifies that, in theory, the real regulation links can be recovered
by using this approach.

Moreover, to determine if there exists a matching between real and inferred clusters
statistical tests can be done. For example, a chi-square test will be useful to know if the
proportion observed on Figure 23 for example can be interpreted or no.

Personal conclusion
From a more personal point of view, this internship allowed me to associate two fields
of study that are very interesting to me: mathematics and biology. It also allowed me
to discover the world of research and the work in a laboratory. Moreover, I was able to
improve my oral communication skills since I did a presentations of my work every week for
my tutors. I also did two presentations, at the beginning and at the end of the internship,
to present my work to a larger audience.

From a more scientific point of view, I learned a lot about graph theory and how to
manage the data associated with it. I also improved my computer skills especially in R

language by programming with different packages. I learned how to read a scientific paper
associated with a package and to understand how it works.
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1 Appendix A: Analysis of GRNr

1.1 Boxplot of degree and betweenness according to the nature of genes

Figure 24: Boxplot of the degree in GRNr.

Figure 25: Boxplot of the betweenness in GRNr.

37



2 Appendix B: Results from GENIE3 inference

2.1 Precision and Recall by σ factors

Figure 26: Precision as a function of recall for σ factors in GRNRF (method 1).

Figure 27: Precision as a function of recall for σ factors in GRNRF (method 2).
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Figure 28: Precision as a function of recall for σ factors in GRNRF (method 3).

2.2 Combination of regulators in cluster 4 of GRNRF

Figure 29: Distribution of the combinations of regulators in cluster 4 of GRNRF.
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2.3 Other results obtained with GENIE3

Method Scaling Settings Nb common edges Nb cluster Precision Recall

RF No By default 259 40 0.02 0.03
RF Yes By default 252 38 0.02 0.02
RF No Reg list 1.517 14 0.13 0.15
RF No Change seed 263 43 0.02 0.03
ET No By default 256 34 0.02 0.03
ET Yes By default 266 33 0.02 0.03

Table 7: Results of the different inferences done with GENIE3.
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3 Appendix C: Results from “naive” inference

3.1 Precision and Recall by σ factors

Figure 30: Precision as a function of recall for σ factors in GRNcor (method 1).

Figure 31: Precision as a function of recall for σ factors in GRNcor (method 2).
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Figure 32: Precision as a function of recall for σ factors in GRNcor (method 3).

3.2 Combination of regulators in cluster 4 of GRNcor

Figure 33: Distribution of the combinations of regulators in cluster 4 of GRNcor.
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4 Appendix D: Results from PCIT inference

4.1 Precision and Recall by σ factors

Figure 34: Precision as a function of recall for σ factors in GRNpcit (method 1).

Figure 35: Precision as a function of recall for σ factors in GRNpcit (method 2).
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Figure 36: Precision as a function of recall for σ factors in GRNpcit (method 3).

4.2 Combination of regulators in first clusters

Figure 37: Combination of regulators in cluster 1 of GRNpcit.
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Figure 38: Combination of regulators in cluster 2 of GRNpcit.

45


	Laboratory
	Context and objective
	Biological context
	Graph theory
	Data presentation
	Expression Data
	Network and inference


	Exploratory analysis of the data
	Descriptive analysis
	Principal component analysis
	Graph mining

	Methods
	Tree based methods
	Trees
	Original Random Forests
	Extremely Randomized Trees (Extra-Trees)
	GENIE3 package

	Methods based on correlations
	Network inference based on correlation
	Gaussian Graphical Model
	Partial correlation and information theory (PCIT)
	PCIT package

	Bayesian network approach
	Global description
	Inference methods
	Application

	Evaluation of the methods
	Global comparison
	Comparison of vertex properties
	Clustering similarities


	Results and comparison of methods
	Clustering on GRNr
	Inferred networks with tree-based methods
	Other networks inferred by GENIE3

	Inference by methods based on correlations
	Inferred network using Pearson correlations
	Networks inferred by PCIT


	Conclusion
	Appendixes table
	Appendix A: Analysis of GRNr
	Boxplot of degree and betweenness according to the nature of genes

	Appendix B: Results from GENIE3 inference
	Precision and Recall by  factors
	Combination of regulators in cluster 4 of GRNRF
	Other results obtained with GENIE3

	Appendix C: Results from ``naive'' inference
	Precision and Recall by  factors
	Combination of regulators in cluster 4 of GRNcor

	Appendix D: Results from PCIT inference
	Precision and Recall by  factors
	Combination of regulators in first clusters



