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Functional data in a nutshell
Functional data... just functions (in mathematical sense)
[Ramsay and Silverman, 2005, Ramsay and Silverman, 2002].
Examples: time series (mostly): weather, wearable sensors, chemiometrics spectra, ...

[Picheny et al., 2019]

[Neethirajan, 2020]
[Lefort et al., 2021]
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Time series is the new trend?

Disclaimer: Forecasting is a specific case, not covered by this class
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Scientific question

?−→

Purpose: prediction of a target quantity (e.g., yield) from functional data (e.g.,
weather time series)

Here: ? = random forest
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Extensions of random forest for time series
▶ Similarity based techniques

▶ Proximity forest [Lucas et al., 2019] (restricted to classification)
▶ Fréchet forest [Capitaine et al., 2020]

Image by courtesy of Charlotte Pelletier

▶ Interval based techniques
▶ Time Series Forest [Deng et al., 2013] and its extension [Middlehurst et al., 2020]
▶ RISE [Lines et al., 2018]

▶ Dictionnary or symbolic representation based techniques:
▶ TS-CHIEF [Shifaz et al., 2020] (combines all types of splits including dictionnary

based splits based on work of [Schäfer, 2015])
▶ (multivariate time series) symbolic representation of time series

[Baydogan and Runger, 2015]
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▶ (multivariate time series) symbolic representation of time series

[Baydogan and Runger, 2015]

RF for functional data

2023-09-05 / Nathalie Vialaneix

p. 5



Similarity based techniques

Interval based techniques

Dictionnary or symbolic representation based techniques

Improving interpretability: interval selection
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You don’t know what to do with your time series?

Use distances! (or kernels)

Numeric time series
DTW [Sakoe and Chiba, 1978],

Derivative DTW
[Keogh and Pazzani, 2001], ...

Categorical time series
χ2-metric, optimal matching, edit distances, . . .
[Massoni et al., 2013, Studer and Ritschard, 2016]

See: R package TSclust
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Use distances!

?−→

But now: I don’t have variables anymore to define splits!
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Proximity forest [Lucas et al., 2019] (classification only)

Splits defined by splitter pairs and
distances.

In practice: select best “splitter” pair
among R (5) randomly chosen splitter pairs
using Gini.
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Generalization: Fréchet forests [Capitaine et al., 2020]

Inputs: repeated time series

Example: n = 17 patients × p = 5, 398
gene expression time series

Goal: predict viral load (also time series)

Notation: Xi = (X
(1)
i , . . . ,X

(p)
i ) where X

(j)
i ∈ (Xj , dj) (metric space)

Yi ∈ (Y, d) (also a metric space)

some slides by courtesy of R. Genuer
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Basics on Fréchet things... (similar to kernels)

?−→

dj

Can I compute distances and variance just using dj?

Yes! [Fréchet, 1906, Peterson and Müller, 2019]:

▶ empirical Fréchet mean of (X
(j)
i )i∈C :

X (j) ∈ argmin
z∈(Xj ,dj )

1

|C|
∑
i∈C

d2
j

(
X

(j)
i , z

)
▶ empirical Fréchet variance:

VC =
1

|C|
∑
i∈C

d2
j

(
X

(j)
i ,X (j)

)
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In short: Fréchet split for X (j)

1. Fréchet 2-means [Genolini et al., 2016] → partition of (X
(j)
i )i∈C into Cj

L and Cj
R

2. Quality of split:

Φ(j)(C)−

(
|Cj

L|
|C|

Φ(Cj
L) +

|Cj
R |

|C|
Φ(Cj

R)

)
with Φ: Fréchet variance of Y
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In short: Fréchet tree
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prediction: Fréchet mean of Y in C5
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Summary: Fréchet random forests

https://github.com/Lcapitaine/FrechForest/tree/master (R package)

Ln

LΘ1
n LΘℓ

n LΘq
n

ĥ(.,Θ1,Θ
′
1) ĥ(.,Θℓ,Θ

′
ℓ) ĥ(.,Θq,Θ

′
q)

ĥFRF(.,Θ1:q,Θ
′
1:q)

Bootstrap

RI Fréchet tree

Fréchet mean

RF for functional data
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Take home message of similarity based RF

▶ Proximity forest
▶ splits based on random draw of two functions (X )
▶ nodes based on distances between functions
▶ restricted to classification

▶ Fréchet forest
▶ splits and nodes based on distance based 2-means
▶ more suited for multivariate function inputs
▶ adapted to any type of outputs
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Similarity based techniques

Interval based techniques

Dictionnary or symbolic representation based techniques

Improving interpretability: interval selection
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Time Series Forest

Basic principles:

1. for a given tree: random sampling of intervals

2. for a given tree: compute summaries (mean, sd, slope for [Deng et al., 2013])

3. define splits as usual based on these summaries

Implemented in Python package ptys (contains also most transformations or
preprocessings described in this class).

RF for functional data
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Time Series Forest

Ln

LΘ1
n LΘℓ

n LΘq
n

ĥ(.,Θ1,Θ
′
1) ĥ(.,Θℓ,Θ

′
ℓ) ĥ(.,Θq,Θ

′
q)

ĥFRF(.,Θ1:q,Θ
′
1:q)

Bootstrap

select intervals + compute summaries

averaging
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More on summaries for time-series

▶ add more summaries: catch22 [Middlehurst et al., 2020])

▶ use basis decomposition, power spectrum (Fourier) or auto-correlation features
[Lines et al., 2018] (HIVE-COTE)

X (t) =
∑p

j=1 βjϕj(t)
(ϕj : basis functions)

−→ (βj)j ⊂ Rp
Xi −→ FFT ∈ RT

RF for functional data
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Random Interval Spectral Ensemble (RISE) [Lines et al., 2018]

Ln

LI1
n LIℓ

n LIq
n

ĥ(., I1,Θ′
1) ĥ(., Iℓ,Θ′

ℓ) ĥ(., Iq,Θ′
q)

ĥFRF(., I1:q,Θ′
1:q)

random interval selection

tree based on PS or ACT (∼ p = 8)

averaging
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Similarity based techniques

Interval based techniques

Dictionnary or symbolic representation based techniques

Improving interpretability: interval selection
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Symbolic representations based on FFT and windowing

BOSS [Schäfer, 2015]

Based on: Fourier transform then symbolic representation.
A Java implementation exists.

RF for functional data
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Symbolic representation based on trees

[Baydogan and Runger, 2015]

Recode Xi (tk) using the tree partitionning (A,B,C ,D,E ) = proportion of the time
series in each class.
Xi −→ R

∑T
t=1 Nt (Nt : number of partitions induced by tree t).
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Similarity based techniques

Interval based techniques

Dictionnary or symbolic representation based techniques

Improving interpretability: interval selection

RF for functional data

2023-09-05 / Nathalie Vialaneix

p. 24



Scientific question

Purpose: Improve interpretability by selecting the most predictive intervals.
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Overview of SFCB (Selection Forest for funCtion Based
predictions)

[Servien and Vialaneix, 2023], R package SISIR

partition of the
functional range

adjclust
or

cclustofvar

summary computation

basics
or

cclustofvar
or

PLS

selection

boruta
or

relief
or

no selection

+ target prediction
(with RF)
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A focus on partition of the functional range

Two unsupervised and data-driven methods:
▶ Constrained hierarchical clustering [Randriamihamison et al., 2021] as in R package

adjclust [Ambroise et al., 2019]: correlations between time steps + kernel based HC

▶ Clustering of variables (ClustOfVar, [Chavent et al., 2012]; also hierarchical and
also based on correlation but using PCA-like criterion) but constrained to
contiguity (implementation available in SISIR)

Output: dendrogram + cut ⇒ intervals (or hierarchy or intervals)

RF for functional data

2023-09-05 / Nathalie Vialaneix

p. 27



A focus on partition of the functional range

Two unsupervised and data-driven methods:
▶ Constrained hierarchical clustering [Randriamihamison et al., 2021] as in R package

adjclust [Ambroise et al., 2019]: correlations between time steps + kernel based HC
▶ Clustering of variables (ClustOfVar, [Chavent et al., 2012]; also hierarchical and

also based on correlation but using PCA-like criterion) but constrained to
contiguity (implementation available in SISIR)

Output: dendrogram + cut ⇒ intervals (or hierarchy or intervals)

RF for functional data

2023-09-05 / Nathalie Vialaneix

p. 27



A focus on partition of the functional range

Two unsupervised and data-driven methods:
▶ Constrained hierarchical clustering [Randriamihamison et al., 2021] as in R package

adjclust [Ambroise et al., 2019]: correlations between time steps + kernel based HC
▶ Clustering of variables (ClustOfVar, [Chavent et al., 2012]; also hierarchical and

also based on correlation but using PCA-like criterion) but constrained to
contiguity (implementation available in SISIR)

Output: dendrogram + cut ⇒ intervals (or hierarchy or intervals)

RF for functional data

2023-09-05 / Nathalie Vialaneix

p. 27



A focus on summary of intervals

Three methods:

▶ Unsupervised: mean and sd

▶ Supervised: 1st PLS component (same idea in [Poterie et al., 2019] for group-based
RF; or other authors . . . )

▶ for cClustOfVar only: composite variable obtained from ClustOfVar (similar to
PC)

Output: RK vector

−→

RF for functional data
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A focus on variable selection
Two methods:
▶ RF based variable selection: Boruta [Kursa and Rudnicki, 2010] (other methods

available like the excellent VSURF [Genuer et al., 2015], see
[Speiser et al., 2019, Degenhardt et al., 2019])
I am so eager to know more!!

▶ a standard VS method: Relief (extended to regression
[Kira and Rendell, 1992, Robnik-Šikonja and Kononenko, 1997])
I am so eager to know more!!

Output: selected summaries corresponding to intervals

RF for functional data
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Application to black truffle & weather time series

Dataset courtesy from authors of
[Baragatti et al., 2019] and fully
available at https:
//doi.org/10.57745/KMH2GP.

▶ X : p = 15 monthly measures (4: rainfall, sun,
...) from January of year N to March of year
N + 1 for N ∈ J1925, 1949K (n = 25)

▶ Y : yield of truffles year N + 1

▶ expert knowledge of important periods for each
weather measurementRF for functional data
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A brief overview of the comparison between variants

RF for functional data
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On simulated dataset

▶ X : 1,000 weather daily time
series (WACSGen simulator
[Flecher et al., 2010]) –
p = 444

▶ Y :

yi = log (1 + |⟨xi , β⟩|) + ϵi ,

▶ β: piecewise constant as
“truth” on the left

▶ ϵi ∼ N (0, 0.5)

RF for functional data
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End of the story!

Questions?

RF for functional data
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Boruta Back

RF + VI computation

compare:

VI(j) maxj VI(j)

1: repeat
2: augment dataset with randomized shadow copies
3:

4: train random forest and compute VI
5: compute ZMOCK := maxj : copies VI(j)
6: Decision: for j in initial variables
7: if VI(j) > ZMOCK then
8: j is selected
9: else

10: if VI(j) rejected by Student’s test for ZMOCK then
11: j is rejected
12: end if
13: end if
14: until all variables have been given a decision or Tmax iterations

have been performed
RF for functional data
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Relief

Iterative computation of weights:

1. pick an observation i at random

2. update weights of variable j :

wj = wj−(xij−xnearest hit,j)
2+(xij−xnearest miss,j)

2

Back

RF for functional data
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Credits
▶ Evolution of the number of publications on time series has been obtained from

https://app.dimensions.ai

▶ corn harvest image is “récolte du mäıs à Épône (Yvelines)” by Spedona, from Wikimedia
Commons

▶ DTW image is courtesy of Charlotte Pelletier

▶ Proximity forest split image is taken from [Lucas et al., 2019]

▶ Design of experiment impage for vaccine trial is taken from [Capitaine et al., 2020]

▶ Fréchet tree, related time series and Fréchet forest images are courtesy of Robin Genuer (and
adapted to my needs)

▶ BOSS images are taken from [Schäfer, 2015]

▶ tree recoding image is taken from [Baydogan and Runger, 2015]

▶ black truffle basket image is “A basket of Summer black truffles from Mercato Gourmet by
Giando” by Peachyeung316, from Wikimedia Commons

▶ Relief method image is “Illustration of Relief neighbor selection for scoring.” by Docurbs from
Wikimedia Commons

The rest is my own work.

RF for functional data
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